

A Data Specification for Software Project

Performance Measures: Results of a

Collaboration on Performance

Measurement

Mark Kasunic

July 2008

TECHNICAL REPORT

CMU/SEI-2008-TR-012
ESC-TR-2008-012

Software Engineering Process Management

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2008 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions

and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for

external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site

(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

i | CMU/SEI-2008-TR-012

Table of Contents

Acknowledgements iii

Abstract v

1 Introduction 1

2 Performance Measurement—Challenges 3

3 Performance Measures for Software Projects—Overview 9

3.1 Project Effort 10

3.2 Productivity 12

3.3 Project Duration 13

3.4 Schedule Predictability 15

3.5 Requirements Completion Ratio 17

3.6 Post Release Defect Density 18

4 Influence Factors for Software Projects—Overview 19

4.1 Size 22

4.2 Artifact Reuse 28

4.3 Project Type 38

4.4 Application Domain 39

4.5 Average Team Size 44

4.6 Maximum Team Size 47

4.7 Team Expertise 49

4.8 Process Maturity 51

4.9 Functional Requirements Stability 56

5 Using the Performance Measures and Influence Factors 59

6 Request for Feedback 63

Appendix: Benchmarks and Benchmarking 65

Glossary 71

References 81

ii | CMU/SEI-2008-TR-012

iii | CMU/SEI-2008-TR-012

Acknowledgements

This publication is the result of many incremental pieces of writing and could not have been

accomplished without the involvement and contribution of our collaborators.

The following individuals participated on the team that developed the initial drafts of the

definitions that appear in this report. The drafts were discussed through face-to-face meetings and

by teleconference before being presented for additional review by other experts.

Kate Armel (QSM)

Michael Bragen (Software Productivity Research, LLC.)

Robert Floyd (Raytheon)

David Garmus (David Consulting Group)

Tim Hohmann (Galorath Incorporated)

Mark Kasunic (SEI)

Arlene Minkiewicz (PRICE Systems)

Tony Rollo (ISBSG)

In addition to the individuals above, the following collaborators provided feedback and

participated in consensus-based document review workshops.

Carol Dekkers (4SUM Partners)

Khaled El Emam (University of Ottawa)

Eric Finch (PRTM)

Pekka Forselius (4SUM Partners)

Dennis Goldenson (SEI)

Thomas Lienhard (Raytheon)

Kristal Ray (Oracle)

Bob Weiser (Lockheed Martin)

David Zubrow (SEI)

Thanks to Bill Novak of the SEI for his contribution to developing the definition for application

domain. Thanks also to Linda Parker Gates of the SEI who provided helpful comments on an

early version of the document.

The author would also like to thank Grant Bayne, Wolfhart Goethert (SEI), Zhang Hefei

(Samsung), Ben Linders (Eriksson), Jim McCurley (SEI), Nandkumar Mishra (Patni Computer

Systems), Yogesh Naik (Patni Computer Systems), James Over (SEI), David Rogers (EDS), and

iv | CMU/SEI-2008-TR-012

Pradeep Waychal (Patni Computer Systems) for technical review of the final draft document.

Their thoughtful comments improved the quality of the report.

Thanks to Dave Zubrow, manager of the Software Engineering Measurement & Analysis Group

(SEMA), for developing the original idea and impetus that led to this work. Thanks to Bill

Peterson, director of the SEI’s program on Software Engineering Process Management (SEPM),

who provided strong and visible support for this endeavor. Thanks to Bob Fantazier for his able

graphic design support. Last but not least, thanks to Erin Harper and Barbara White for their

excellent editorial support.

v | CMU/SEI-2008-TR-012

Abstract

This document contains a proposed set of defined software project performance measures and

influence factors that can be used by software development projects so that valid comparisons can

be made between completed projects. These terms and definitions were developed using a

collaborative, consensus-based approach involving the Software Engineering Institute's Software

Engineering Process Management program and service provider and industry experts in the area

of software project performance measurement. This document will be updated over time as

feedback is obtained about its use.

vi | CMU/SEI-2008-TR-012

1 | CMU/SEI-2008-TR-012

1 Introduction

Do you golf, jog, bowl, ride a bicycle, lift weights, or play basketball? If you do, then you likely

keep track of your performance. Perhaps it is as simple as, ―I knocked off three strokes from my

game today,‖ or ―I lifted ten more pounds than I could last week,‖ or ―Our team had five less

turnovers today compared with last week.‖

People keep score like this because most are

performance- or achievement-driven. They want to

know how well they are doing—whether their

performance is improving or declining—and how their

performance compares with their own personal best or

with the performance of others. Performance feedback

can provide the challenge and motivation for attaining higher levels of achievement.

In much the same way, companies, organizations, and software projects want to understand their

overall performance, compare it to others, and find ways to become better.

Software organizations, whether they are just starting a measurement program or have a well-

developed program, want a way to gauge the performance of their software projects against other

organizations in their industry. Organizations just starting a measurement program do not have

historical data on which to base their estimates, so they want to know what measures they should

use and what reasonable targets for their measures are. Organizations that are more experienced in

measurement want to compare their performance with competitors in their industry. Finally,

organizations want to learn about the best practices used by industry leaders so they can adapt

them for their own use through the improvement technique referred to as benchmarking. In each

of these cases, the valid comparison of measurement data is an integral step in realizing these

objectives. However, a widespread obstacle to valid measurement comparison is inconsistent

terminology and a lack of common definitions for software project measurement terms.

In this document, we propose a set of defined software project performance measures and

influence factors that can be used by software development projects so that valid comparisons of

performance can be made. These terms and definitions were developed using a collaborative,

consensus-based approach involving the SEI’s Software Engineering Process Management

(SEPM) program and service providers and industry experts in the area of software project

performance measurement.

Section 6 of this document requests feedback regarding the use and value of the performance

measures and influence factors described in this document. It is our intention to update this

specification as we gain insight into the measures and influence factors useful for comparing and

contrasting software project performance.

If winning isn’t
everything, why do
they keep score.“

”- Vince Lombardi

2 | CMU/SEI-2008-TR-012

3 | CMU/SEI-2008-TR-012

You can’t manage what
you can’t measure.“ ”- Peter Drucker

2 Performance Measurement—Challenges

What is

performance

measurement?

Performance measurement focuses on results. It asks, ―What does success

really mean?‖ In its simplest terms, performance measurement is a process

of assessing the results of a company, organization, project, or individual to

(a) determine how

effective the operations

are, and (b) make changes

to address performance

gaps, shortfalls, and other

problems.

Generally speaking, companies and organizations measure their

performance using different methods and criteria. But the focus of a

performance measurement system should be the key activities of the

business. For each key activity, there are numerous possibilities for

measurement. Measures must be selected carefully so that they address the

specific goals and objectives of the activity.

Many progressive and leading organizations employ an enterprise-wide

formal performance measurement system such as Goal-Driven

Measurement [Park 1996, Basili 1994], Balanced Scorecard [Kaplan 1992],

Six Sigma [Pyzdek 2003, Breyfogle 2003], Practical Software and Systems

Measurement [McGarry 2001], and variations of Shewhart’s Plan-Do-

Check-Act Paradigm [Deming 1986]. Each of these approaches emphasizes

the need to take the following steps:

1. Set clear and achievable performance goals or objectives.

2. Define quantitative measures and measurement indicators to

characterize performance relative to the goals or objectives.

3. Establish measurement targets that reflect the desired condition or

expectation for each performance measurement.

4. Collect the measurement data (i.e., results).

5. Evaluate the data and use the results to make adjustments in

operations that will improve the probability of reaching the targets

efficiently.

When selecting measures for software projects, organizations should always

begin with a systematic measurement definition approach. However, we

believe that the performance measures identified in this document are core

measures that would be identified as part of the set of critical measures of

success since they address important attributes of any software development

project.

4 | CMU/SEI-2008-TR-012

Why measure

performance?

There are many reasons why organizations want to measure performance.

Some of the reasons include the following:

Goal achievement. The purpose of performance measurement is to provide

feedback about whether or not an organization is meeting its business or

project goals. This feedback improves the likelihood of achieving these

goals efficiently. Performance measurement enables a team, project, or

organization to understand whether they are on track or whether adjustments

need to be made to be successful.

Planning and Estimation. Historical measurement data can be used as a

basis to forecast or estimate future performance. Because it ties activities to

results, performance measurement is a long-term planning tool that can

justify resource allocation for software projects.

Improvement. Performance data can be compared within and outside an

enterprise to identify weak areas that can be addressed to improve overall

performance.

Communication. The reporting of well-defined performance measures can

enhance staff, stakeholder, and partner understanding and support of

strategies and decisions.

Compliance. In some cases, companies measure performance in order to

comply with regulations or other standards.

Performance

measurement to

support

improvement

One important purpose for implementing a program of performance

measurement is to support improvement. When data is available from

multiple projects that possess similar characteristics, a project can compare

its performance to others to determine areas of strength and weakness. When

used in this way, measurement comparison serves as a motivator of process

improvement.

A more powerful use of performance measurement is within the context of

benchmarking. Benchmarking is a process that uses performance

measurement to identify best-in-class achievement (i.e., the benchmark), but

goes beyond mere comparison to determine how the best-in-class

achievement was attained. Once the how is understood, the enablers (e.g.,

methods, procedures, tools) that led to the stellar performance are adapted by

an organization or project that wants to improve and thereby achieve similar

stellar performance [APQC 1993]. See the appendix for a more detailed

description of benchmarks and benchmarking.

5 | CMU/SEI-2008-TR-012

Performance

measurement vs.

appraisals

An organizational appraisal is a systematic study conducted periodically or

on an ad hoc basis to assess how well an organization is working. For many

years the SEI has used process appraisal results to provide information

about the process maturity of the software engineering community. These

appraisals are conducted by experts to examine aspects of organizational

performance in the broad context in which it occurs. This type of assessment

is very useful in that an in-depth examination of organizational processes

allows for an overall assessment of whether the organization is employing

good practices as part of its operations. These appraisals help the

organization decide how

it can change its practices

to realize improvement.

However, appraisals do

not quantitatively address

critical dimensions of

success such as cost,

schedule, quality, and

customer satisfaction.

Performance

measurement, because of its ongoing nature, can serve to tell how an

organization is performing over time. It serves as an early warning system

and provides accountability for performance that is directly tied to the

project or organization’s critical success factors. Both types of assessment

aim to support improvement. Quantitative data on project performance is

needed to demonstrate actual improvement in areas critical to a company’s

success.

The problem When performance measurement is used for comparison purposes (either for

simple comparison or for benchmarking), the measures to be compared must

be commonly defined. However, in the software development world,

measurement definition has by no means been standardized. Herein lays the

major obstacle that has hampered effective software project performance

comparison.

Consider the case of four different software projects that have similar

characteristics. Each project measures productivity and uses the common

term ―productivity‖ to refer to the measure. However, the actual definitions

that have been assigned to the term are different. Figure 1 (adapted from

Kasunic [Kasunic 2006]) shows this problem conceptually. Although each

project measures ―productivity,‖ the actual measures cannot be compared

readily. Though a common term is used to refer to each measure, making

comparisons is analogous to comparing apples and oranges.

When you can measure
what you are speaking
about and express it in
numbers, you know
something about it.

“
”- Kelvin

6 | CMU/SEI-2008-TR-012

Figure 1. Common measurement definitions are required to make

comparisons.

Addressing the

problem

The SEI’s Software Engineering Process Management (SEPM) program

launched a collaborative research effort to investigate ways to improve the

practice of software project performance measurement. Several types of

organizations have been collecting project performance data, including

development firms, cost estimation tool vendors, and service provider

companies. Furthermore, there are organizations that focus specifically on

performance measurement and possess repositories of software project

performance data. To leverage this existing information, the SEI held a

workshop with experts from a small set of organizations that were already

working in or had a strong interest in the area of software project

performance measurement. (See Table 1 for a list of collaborating

organizations.)

The kick-off workshop was held at the SEI in Pittsburgh, Pennsylvania

during April 2006. A key outcome of this workshop was a consensus-based

acknowledgement that the lack of common definitions for performance

measures makes measurement comparison difficult or impossible. The

group of collaborators decided that a primary goal of the collaboration

should be to work together to (1) define a small set of key performance

measures and influence factors that should be used by software projects and

(2) to develop consensus-based definitions for those measures and factors.

Table 1. Collaborating organizations.

David Consulting Group PRTM

Galorath Incorporated QSM

ISBSG Raytheon

Lockheed Martin SEI

Motorola Software Productivity Research, LLC.

Oracle 4SUM Partners

PRICE Systems University of Ottawa

7 | CMU/SEI-2008-TR-012

Problem

approach

Through a series of workshops and group work sessions, a set of software

project performance measures and influence factors was identified and

defined.

The group started with a large list of candidate measures and factors, then

used multi-voting to whittle the list down to what was considered a

manageable set of terms.
1
 The selection process was guided by the

following questions:

1. What are the key measures that best characterize project

performance?

2. What factors impact performance in a significant way?

3. What measures and factors would be most useful for software

project performance comparison?

4. How difficult would it be to collect the factor or measure?

5. Is the factor or measure currently being collected as part of your

organization’s data repository?
2

The final list of performance measures is presented in Table 2, and the list

of influence factors is presented in Table 3.

Table 2. Performance Measures Table 3. Influence Factors

Project effort Size

Productivity Artifact reuse

Project duration Project type

Schedule predictability Application domain

Requirements completion ratio Average team size

Post-release defect density Maximum team size

 Team expertise

 Process maturity

 Functional requirements stability

1
 As the group worked to define the terms in the list, some changes were made and a few terms were added (e.g.,

artifact reuse). Changes to the list were made through group consensus.

2
 Many of the collaborators contributing to this effort possess their own proprietary data repository of software

project performance data.

8 | CMU/SEI-2008-TR-012

Problem

approach, cont.

Once the set of performance measures and influence factors was selected,

individuals volunteered to draft the definitions of specific terms for group

discussion and decision-making. To guide development of the draft

definitions, authors were asked to use or align with already existing

standards such as those available through ISO and IEEE when possible.

Literature research was conducted to leverage previous work when standard

definitions were unavailable.

A significant amount of discussion and multiple revision cycles occurred

over a period of months before the definitions were approved by group

consensus. Once approved, the definitions were rewritten for a broad

audience and examples were added to clarify or augment the definitions.

The evolving revisions were reviewed by each of the collaborators followed

by redlining sessions during workshops where group members met face-to-

face.

Specificity of

the definitions

There is an unavoidable conflict between the level of specificity of a

definition and its usability by organizations. On the one hand, having a very

detailed definition ensures comparability of measures collected. However,

this likely reduces the number of organizations that would use that exact

definition. This trade-off was discussed at length among the collaborators.

In the end, we decided to seek a middle level of specification that would

define the attribute but allow some tailoring and variation in the actual

operation definitions employed.

There was concern that over-specification would lead to overly complex,

protracted definitions that are difficult or inappropriate for some

organizations to implement. We also recognized that organizations operate

within different business environments which may influence the type of

measurement detail that is practical and useful. For these reasons, we leave

it to organizations to specify the next level of definition detail to the

definitions specified in this document if doing so is appropriate to their

context.

In Section 6 of this document, readers are encouraged to provide feedback

about their experiences with using the performance measures and influence

factors that are specified in this document. In the future, we would like to

publish case studies that describe how this specification was implemented

by various organizations.

9 | CMU/SEI-2008-TR-012

3 Performance Measures for Software Projects—Overview

Introduction Software project performance measures, definitions, and examples are

provided in this section.

The set of measures does not represent an exhaustive list. The measurement

experts who collaborated on this project determined that they were key

measures that every organization should collect and use as a basis to

compare performance between projects.

In this section In this section, measurement indicators for software development projects

are defined and illustrated.

Performance measure Subsection See Page

Project effort 3.1 10

Productivity 3.2 12

Project duration 3.3 13

Schedule predictability 3.4 15

Requirements completion ratio 3.5 17

Post-release defect density 3.6 18

10 | CMU/SEI-2008-TR-012

3.1 Project Effort

Aliases Team effort, work effort

Definition Project effort is the total project team time that is spent on project-related

activities during the life cycle of the project.
3

Activities that do not specifically contribute to the development and

delivery of the software products are excluded from the calculation of

project effort.
4

Project effort should include all project-related effort, including

compensated and uncompensated overtime.

n

i

ir_HoursTeam_MembeEffort Project
1

where

Team_Member_Hoursi is the time spent on project-related

activities for team member i; and

n is the total number of individuals that

contributed time to project-related

activities over the life cycle of the project.

3
 Project-related activities are events in the software process life cycle for which effort data is collected and reported

[IEEE 1992].

4
 Some examples of activities that address needs not directly related to the project include company-wide meetings,

conference attendance, information seminars, and professional development training.

11 | CMU/SEI-2008-TR-012

Team Member

Hours

This table lists the types of activities included as part of team member

hours.

Category Description

Direct delivered team

hours

Team hours that directly contribute to defining

or creating outputs (e.g., software code, user

guide) that are delivered to the customer.

Direct non-delivered

team hours

Direct team hours resulting in production of

outputs (e.g., requirements tracing document,

risk management database, defect tracking

logs) that are not delivered with the final

product.

Support hours Hours expended by members of the project

team on work that does not directly define or

create products but assists those who do.

Example A project team of 10 individuals recorded their time spent on project-related

activities and reported the information at the end of each week. When the

project was completed, the cumulative hours for each team member were

calculated and the following table was produced.

 Team member Hours

1 Project Manager 590

2 Requirements Analyst 260

3 Software developer 450

4 Software developer 450

5 Software developer 450

6 Software developer 233

7 Software developer 100

8 Software tester 175

9 Software tester 150

10 Quality Assurance 35

 Total 2893

 Therefore,

2893
1

n

i

ir_HoursTeam_MembeEffort Project hours

12 | CMU/SEI-2008-TR-012

3.2 Productivity

Aliases Efficiency, yield

Definition Productivity of a software project is calculated as follows:

Productivity =
Effort Project

 Size

where

Size is defined as described in Section 4.1 of this

document; and

Project Effort is defined as described in Section 3.1 of this

document.

Comment Productivity is expressed as

size per hours

where ―size‖ depends on how size is measured by an organization (e.g.,

lines of code, function points, feature points, use cases, objects).

Example #1:

FP

A project developed 136 function points (FP). The project effort to

accomplish this was 5,346 hours. Therefore,

Productivity =
Effort Project

 Size =
5,346

136 = 0.25 FP per hour

Example #2

LLC

A project developed 14,346 logical lines of code (LLC). The project effort

to accomplish this was 5,346 hours. Therefore,

Productivity =
Effort Project

 Size =
5,346

14,346 = 2.7 LLC per hour

13 | CMU/SEI-2008-TR-012

3.3 Project Duration

Aliases Project cycle time, time-to-market

Definition Project duration is a measure of the length of a project in work days,

excluding times when the project is not active due to work stoppages.

Project duration includes non-work days such as weekend days and

holidays.

Project start is the date when user requirements have been baselined.

Project end is the date of the first installation of the software

application.

Project Duration is calculated as follows:

days_stoppagedays_numDuration Project

where:

num_days is the total # of calendar days between the project

start and project end; and

stoppage_days is the number of days when project work was not

executed due to work stoppage.

Example User requirements for a software project were baselined on November 3, 2006.

The first installation of the software was completed on September 14, 2007.

Due to funding issues, the project was suspended for 10 work days during June,

2007.

14 | CMU/SEI-2008-TR-012

Example,

continued

The following table summarizes the project duration information.

Month # Calendar

days

Stoppage

days

November 3 [start] 28

December 31

January 31

February 28

March 31

April 30

May 31

June 30 10

July 31

August 31

September 14 [end] 14

Total 316 10

 Therefore:

num_days = (total # calendar days)

num_days = 316

Project Duration is calculated as:

Project Duration = num_days – stoppage_days

 = 316 – 10

 = 306 days

15 | CMU/SEI-2008-TR-012

3.4 Schedule Predictability

Aliases Schedule estimation accuracy, schedule estimation variance, schedule

underrun/overrun, schedule slippage

Definition Schedule predictability is a measure of how much the original project

duration estimate differs from the actual project duration that was achieved.

Schedule predictability is defined as a percentage as

SP =
Duration Project Estimated

Duration) Project (Estimated -Duration) (Project * 100

where:

SP is schedule predictability;

Project Duration is as defined as in Section 3.3 of

this document; and

Estimated Project Duration is the original estimate of project

duration as documented in the

baselined version of the project

plan.

Note that schedule predictability is a positive value when there is a schedule

overrun and a negative value when there is a schedule underrun.

Example #1:

Overrun

The estimated project duration was documented as 278 days in version 1.0

of the project plan. However, the actual duration realized was 367 days.

Therefore, Schedule Predictability is calculated as

SP =
Duration Project Estimated

Duration) Project (Estimated -Duration) (Project * 100

 =
278

278 - 367 =
278

89 * 100

 = 32.0%

16 | CMU/SEI-2008-TR-012

Example #2:

Underrun

The estimated project duration was documented as 123 days in version 1.0

of the project plan. However, the actual duration realized was 111 days.

Therefore, Schedule Predictability is calculated as

SP =
Duration Project Estimated

Duration) Project (Estimated -Duration) (Project * 100

 =
123

123 - 111 =
123

12 * 100

 = -9.8%

The value is negative, reflecting a schedule underrun.

17 | CMU/SEI-2008-TR-012

3.5 Requirements Completion Ratio

Aliases Requirements planned/delivered, features planned/delivered, scope

satisfaction

Definition The requirements completion ratio measures the extent to which planned

functional requirements were satisfied in the final product implementation.

The requirements completion ratio (RCR) is expressed as a percentage as

RCR =
reqs Planned

reqs Satisfied * 100 %

where:

Planned reqs is the number of requirements that were

originally baselined at the beginning of the

project
5
 and those that have been added or

modified through negotiation with the user; and

Satisfied reqs is the number of functional requirements that

were satisfied in the delivered software

product.

Definition:

Functional

requirements

Functional requirements describe what the system, process, product, or

service must do in order to fulfill the user requirements.

Example The original baselined functional requirements specification contained 90

requirements, and 87 of those requirements were satisfied.

Therefore,

RCR =
reqs Planned

reqs Satisfied * 100 %

 = 96.7%100*0.967
90

87

5
 This is RT as defined in the term Functional Requirements Stability (FRS) on page 73 of this document.

18 | CMU/SEI-2008-TR-012

3.6 Post Release Defect Density

Aliases Defect density after deployment, post-release defects

Definition
6
 Post-release defect density is the number of unique defects per unit size

discovered during the first six months after initial deployment of the

software. Post-release defect density is defined as

Size

D
PRDD

where

PRDD is post release defect density;

D is total number of unique defects discovered

by users during the first six months after

initial installment of the software; and

Size is as defined in Section 4.1 of this document.

Example:

Using FP

A project delivered an application of size 236 function points (FP) to a

customer. A tally was kept of the unique problem reports that were

documented by users during the first six months after initial deployment of

the software. The total number of unique defects that were discovered and

reported was 15. Therefore,

 SizeProject

D
PRDD =

236

15
 = 6.4 defects per 100 FP

Example:

Using LLC

A project delivered an application of size 5,500 LLC to a customer. Three

months after the application was installed, a tally was taken of the unique

problem reports that had been documented by users. The total number of

unique defects that were discovered and reported totaled 39. Therefore:

 SizeProject

D
PRDD =

500,5

39
 = 7.1 defects per 1000 LLC

6
 The ISBSG Glossary of Terms [ISBSG 2006] and IEEE Std 982.1-1988 [IEEE 1988a] were used as reference to

develop this definition.

19 | CMU/SEI-2008-TR-012

4 Influence Factors for Software Projects—Overview

Introduction In this section, software project influence factors are defined with some

examples for purposes of illustration.

What are

influence

factors?

Influence factors are aspects of the development environment that can

impact the outcome of the software project. Some influence factors are

controllable by management, while others are not. When making

comparisons between software projects, influence factors can be used to

facilitate the comparison of projects that are similar to each other (with

respect to one or more influence factors). In a sense, influence factors can be

considered as independent variables whereas the performance measures act

as the dependent variables.

Figure 2. Distinguishing influence factors from performance measures.

20 | CMU/SEI-2008-TR-012

Alternatives for

some

influence

factors

While those collaborating on this project sought to develop a single common

definition for each performance measure or influence factor, they recognized

that in practice there are often different methods used for assessment of some

factors. Alternatives are provided for the type of data that an organization may

prefer to collect and use to characterize the following influence factors:

 size

 artifact reuse

 average team size

 process maturity

With regard to size, the collaborators of this definition effort acknowledged that

various sizing methods have been embraced by different organizations in the

software engineering community. There are strengths and weaknesses to any

sizing approach for software, so various approaches have been identified for

specifying size.

With regard to artifact reuse, the collaborators felt that there would be practical

differences in the rigor that projects would be willing to apply in assessing this

influence factor. Therefore, several methods for assessment have been identified

and organizations can use the one they prefer.

Two methods are proposed for specifying average team size due to the variation

in the way it is determined in the software community.

Finally, there are various approaches that are being used to assess process

maturity. Therefore, various ways that this influence factor can be expressed are

indicated.

21 | CMU/SEI-2008-TR-012

In this section In this section, influence factors for software development projects are

defined and illustrated.

Influence Factor Subsection See Page

Size 4.1 22

Artifact reuse 4.2 28

Project type 4.3 38

Application domain 4.4 39

Average team size 4.5 44

Maximum team size 4.6 47

Team expertise 4.7 49

Process maturity 4.8 51

Functional requirements stability 4.9 56

22 | CMU/SEI-2008-TR-012

4.1 Size

Aliases Project size, software size, functional size

Various size

measures

Size is a measure of the extent of the software product that is developed and

delivered by the project team. Understanding the size is a prerequisite to

characterizing project performance, since productivity is defined as the

amount of product delivered divided by the effort needed [IEEE 1992, ASQ

2007, Isixsigma 2007].

There are different approaches to measuring size. Two popular ways of

measuring size are by counting (1) function points (FP) and (2) logical lines

of code (LLOC).
7

Since most projects report their size information in FP or LLC, we

recommend using one of these counting methods if deemed appropriate by

your organization. Doing so will make it possible to compare your project

data to other projects that use one of these popular counting methods.

If your project uses a size measure other than FP or LLC (e.g., object points,

web pages, screens), it may still be possible for you to make comparisons

with projects that measure using LLC or FP. To do so, you need to develop

a conversion factor that translates the project’s size unit to LLC or FP. The

conversion factor is the average number of LLC or FP required to generate

one unit of the size measure being used by the project. The conversion

factor would be similar to what QSM calls a gearing factor that is used to

convert LLC into FP [QSM 2005].

7
 Other terms are sometimes used interchangeably with the term, logical lines of code (LLC) including but not

limited to source lines of code (SLOC), logical lines of code (LLOC), logical source lines of code (LSLOC), and

thousand lines of code (KLOC).

23 | CMU/SEI-2008-TR-012

Example: Size

measure other

than FP or LLC

A project uses web pages as its size measure, and the size submitted is 47

web pages. Based on analysis conducted by the project, the average number

of LLC required to produce a web page is 95.

a) the name of the measure is ―web pages‖

b) the software size in those units of measure is ―47 web pages‖

c) the conversion factor is ―95 LLC = 1 web page‖

d) the size in LLC using the conversion factor is ―4,465 LLC‖

Size-related

terms

This table provides definitions of some important terms used in sizing

methods.

Term Definition

Logical

lines of

code (LLC)

A single software instruction, having a defined beginning

and end independent of any relationship to the physical lines

on which it is recorded or printed.

Logical source statements are used to measure software size

in ways that are independent of the physical formats in which

the instructions appear [Park 1992].

Physical

line of code

A single line of source code.

Note that a logical line of code may consist of multiple

physical lines of code [Park 1992].

Comment Textual strings, lines, or statements that have no effect on

compiler or program operations, usually designated or

delimited by special symbols. Omitting or changing

comments has no effect on program logic or data structures

[Park 1992].

Blank lines Lines in a source listing or display that have no visible

textual symbols [Park 1992]. Blank lines are sometimes

referred to as white space.

Table continues on next page

24 | CMU/SEI-2008-TR-012

Size-related

terms, continued

Table continues from previous page.

Term Definition

Developed

size

Developed size refers to statements (LLC method) or

function points (FP method) that are added or modified for

the specific application being developed.

Added size is a count of those statements or function points

that did not previously exist and were created specifically for

the application.

Modified size is a count of those statements or function

points taken from a preexisting software product to which

changes were made to make the software suitable for the

application that is being measured [IEEE 1992].

Reused

size

Source statements or function points that were not developed

new for the application are referred to as reused size. Reused

size is a count of unmodified LLC or FP obtained for the

application from an existing source of software. The external

source could be a previous version of the application, a reuse

library, or acquired commercial off-the-shelf software [IEEE

1992].

FP method The Function Point method sizes software by quantifying the tasks and

services (i.e., functionality) that the software provides to the user based

primarily on logical design. The objectives of function point analysis are to

measure the functionality that the user requests and receives, delivered by

software development and/or enhancements independent of the technology

used for implementation.

To determine the size of a particular software release, five function types are

measured: External Input, External Output, External Inquiry, Internal

Logical File, and External Interface File.

When using the FP method, specify

1. the number of function points

2. whether function points are (a) unadjusted or (b) adjusted

3. the method followed to arrive at function point count (e.g., the

Albrecht approach [Albrecht 1979], IFPUG guidelines [IFPUG

2005])

25 | CMU/SEI-2008-TR-012

LLC method The logical lines of code (LLC) method has been adapted from IEEE

standard 1045-1992 [IEEE 1992]. This method entails counting computer

instructions irrespective of the physical format in which they appear.

When using the LLC method,

 Count source statements for different programming languages

separately; identify the programming language for each count.
8

 Count source statements that are expanded within a software

module (e.g., macro expansions) or supplied to the program (e.g.,

by an include statement); these statements shall be counted only

once for all modules being measured.

 Count source statements that invoke, call, or direct inclusion of

other source statements each time they are used.

 Count developed size statements and reused size statements.
9

 Count only those source statements that were incorporated into the

final product delivered to the customer; do not count software

developed but not delivered to the customer such as software

produced to support development of the final product (e.g., test

software, tools, software aids).

 Do not count comment lines.

 Do not count blank lines.

8
 The programming language is identified since some languages are more efficient than other languages. For

example, a fourth generation (4GL) language requires significantly fewer lines of code to accomplish the same

functionality as a first generation language (1GL).

9
 Reuse is addressed in the section that follows titled, “Artifact Reuse.” The count of reused size statements can

serve as an input to the artifact reuse measure.

26 | CMU/SEI-2008-TR-012

Example #1:

LLC method

Consider the following snippet of code using a simple Pascal-like language.

// Counter is updated

if X<Y

then begin numcount := X-Y

else begin numcount := X+Y;

 When using the LLC method, this snippet would be counted as a single line

of logical code.

There is also

 one comment line

 one blank line

 three lines of physical code

Explanation

 The single line of logical code begins with ―if‖ and ends with the

semi-colon; this is a single computer instruction although it is

formatted in such a way that the single instruction wraps to three

lines of physical code.

 The line beginning with ―//‖ is a comment line.

 There is a blank space between the comment line and the line

beginning with ―if‖.

Example #2:

LLC method

Consider the following snippet of C code.

for (x=0; x<50; ++x printf(“Happy Birthday”); /* Print Greeting */

 When using the LLC method, this snippet would be counted as two logical

lines of code.

Explanation

 There is one physical line of code.

 There are two logical lines of code and a comment within the single

physical line of code.

 The two logical lines of code include the for statement and the

printf statement. Each of these is delimited by a semicolon.

 The text between the ―/*‖ and ―*/‖ is a comment.

Summary Size information can be specified in one of the following ways:

1. number of function points (FP)

27 | CMU/SEI-2008-TR-012

2. number of logical lines of code (LLC)

3. If using an alternative to FP or LLC, then provide size using one of

the following ways:

 by providing (a) the name of the size measure
10

 and (b) the

software size in those units of measure

 by providing (a) the name of the size measure, (b) the software

size in those units of measure , and (c) the conversion factor

that translates the project’s size unit to LLC or FP

10

 Examples of size measures other than LLC or FP include objects, web pages, use cases, implementation units

(IUs) [Putnam 2005], screens, reports, database, tables, and scripts.

28 | CMU/SEI-2008-TR-012

4.2 Artifact Reuse

Aliases Asset reuse, software reuse

What is artifact

reuse?

Artifact reuse is the use of existing software or software knowledge
11

 to

build new software or new documents for the project under consideration.

Reusable software knowledge items are referred to as reusable artifacts or

reusable assets and may include requirement documents, designs, test cases,

code, documentation or any other work product that is part of the project's

development process.

Determining

artifact reuse

An artifact reuse value is determined based on the reuse assessment method

that is employed (assessment methods are described on page 29). In each of

these methods, we are trying to find a proxy measure that provides a

reasonable estimate of artifact reuse as defined by

Artifact Reuse =
Total

Saved

PE

PE
 * 100

where

PESaved is the project effort that was conserved or saved

through the reuse of preexisting work products;

and

PETotal is the total project effort that is calculated as

described in Section 3.1 of this document.

Note: PESaved cannot be measured directly, so we preset an indirect way to

approximate this value and to estimate artifact reuse. The remainder

of this section describes how to accomplish this.

11

 Software knowledge is information that is captured in documents that are used within the software development

process. These documents can include forms, templates, and instructions.

29 | CMU/SEI-2008-TR-012

Developing an

estimate of

artifact reuse

Developing an estimate of artifact reuse relies on judgments made about

1. the percent of overall project effort required to develop the

artifacts

2. the percent of effort savings realized by artifact reuse

Assessment

methods

Project teams may vary in terms of the rigor they wish to apply to

assessment of artifact reuse. To account for this, the following methods of

assessment can be applied.

Assessment

Method
Description

Gross Artifact reuse that was realized during the project is

estimated after project completion to obtain an estimate of

PESaved.

A low level of rigor is applied to how the estimate is derived.

Macro Project effort is partitioned by project life-cycle phase. The

degree of project reuse is estimated for each phase of the life

cycle. These estimates are summed to obtain PESaved.

The macro assessment applies more rigor than the gross

assessment method.

Micro Project artifacts are listed for each phase of the project's life

cycle. The amount of effort conserved due to reuse is

assessed for each of the artifacts within and across all life-

cycle phases. These values are then summed to provide the

estimate of PESaved.

The micro method applies the highest degree of rigor to

develop the estimate of PESaved.

 When artifact reuse is reported, the data provider must also specify the

assessment method used.

30 | CMU/SEI-2008-TR-012

% Effort

required to

develop artifacts

This table provides guidance for estimating the percent of overall project

effort required to develop the artifacts generated during each of the listed

life-cycle phases.

The values in the right-most column are used as part of the computation to

estimate artifact reuse which is described later in this section. These values

are an estimate of the percent volume of artifacts developed for each of the

life-cycle phases that are listed.

Assessment

method
Life-cycle phase Artifact type % of phase

effort to develop

Gross n/a n/a 100%

Macro

Design n/a 40%

Construction n/a 25%

Test n/a 35%

Micro

Design

Concept/architecture 17%

Detailed design

description

60%

Design validation 6%

Other 17%

Construction
Software code 95%

Other 5%

Test

Test plans 10%

Test procedures 4%

Test reports 13%

Test drivers 25%

Other 5%

Other activities
12

 43%

Reuse

attributes

When determining artifact reuse, consider

 reuse volume

 reuse effectiveness

Reuse volume Reuse volume refers to the volume of reuse that was realized by the project.

12

 Since testing includes effort that must be performed regardless of available artifacts, testing artifacts account for

less than 100% of the effort during that phase.

31 | CMU/SEI-2008-TR-012

The reuse volume of software code is estimated by

(a)
LLC Total

LLC Reused
; or

(b)
FP Total

FP Reused

A similar expression is used when the counting method is something other

than LLC or FP.

For work products other than code, artifact reuse volume must be

qualitatively estimated. In the case of non-code artifacts, the productivity

gains from reuse will be different depending on the degree or extent to

which project effort is conserved by reusing a given artifact.

In general, PESaved will be higher for knowledge reuse compared to reuse of

simple templates or forms that have minimal knowledge content. While

both templates and complex documents are examples of reuse, if boilerplate

text from a complex document can be reused with minor modification, then

PESaved will be significant compared to reuse of a document template that

provides labeled categories only. In the latter case, the knowledge content

that is reused is much less since the effort-intensive work is to complete

sections of the template.

Assigning reuse

volume for non-

code artifacts

The reuse volume is obtained by assigning a percent value that represents

the volume in terms of productivity savings for the artifact (if micro

assessment is used) or group of similar artifacts (if gross or macro

assessment method is used).

The assignment of volume is based on an individual's or team's best

judgment.

Use the following table as guidance for making the assignment.

If the volume of reuse is

perceived to be ...

Then use a percent in this range to

assign reuse volume

High 67 – 100%

Medium 34 – 66%

Low 1 – 33%

32 | CMU/SEI-2008-TR-012

Example A project manager decided to use the micro method of assessment for

determining artifact reuse.

As part of the assessment, she considered three documents that were part of

the project repository.

The project manager considered the degree of reuse for each of the items

and made the following assignments:

Document
Volume of

reuse
Rationale

Change request

template

5% Simple form; would not take much

to recreate. Contains only three

category headings.

10-page legal form 90% Most of the document text was from

a boilerplate document that would

have taken significant effort to

create from scratch.

Peer review guidance

doc

95% No changes were made to document.

It was used as-is by the project.

Developing the process would have

been very labor intensive.

Reuse

effectiveness

Reuse effectiveness is the second attribute of artifact reuse. This attribute

reflects the amount of modification required to make a preexisting artifact

reusable for the project. A high value for effectiveness indicates that little or

no modification is required. A low value indicates that the artifact or group of

artifacts require a high degree of modification to be usable.

If the degree of modification is… Use this value to characterize reuse

effectiveness

None 100%

Low 66 – 99%

Moderate 33 – 65%

Significant 1 – 32%

Complete 0%

33 | CMU/SEI-2008-TR-012

Example A project manager decided to use the micro method of assessment for

determining artifact reuse.

As part of the assessment, he considered several documents that were part of

the project history folder.

The project manager considered the effectiveness of each artifact and

assigned the values accordingly.

Document Reuse

effectiveness

Rationale

Change request

template

100% Complete reuse; no modification

required.

10-page legal

form

90% Approximately 10% of the document

required modification to be used.

Test plan 30% Required some fairly significant changes

so that it was appropriate for the project's

testing approach.

Artifact reuse:

gross assessment

When a gross assessment method is used, artifact reuse is estimated by the

best judgment that can be brought to bear. In this case, the data provider

specifies their best estimate of artifact reuse for the entire project.

This method is the least desirable since the estimate is made with little rigor.

Artifact reuse:

macro

assessment

When a macro assessment method is used, artifact reuse is estimated by

Artifact Reuse = (PE * R_Volume* R_Effect)Design +

(PE * R_Volume* R_Effect)Code +

(PE * R_Volume* R_Effect)Test

where

PE is the proportion of total project effort required to

develop artifacts during a life-cycle phase, and

 PEDesign = 0.40

PECode = 0.25

PETest = 0.35

R_Volume is the reuse volume that is assigned to all artifacts

that were developed during a phase; and

R_Effect is the reuse effectiveness rating that is assigned to

all artifacts that were developed during a phase.

34 | CMU/SEI-2008-TR-012

Example:

macro

assessment

A project manager using the macro assessment developed the following

estimates based on input from the project staff.

Phase PE Reuse Volume

(R_Volume)

Reuse

Effectiveness

(R_Effect)

Design 0.40 0.6 0.3

Code 0.25 0.8 0.2

Test 0.35 0.5 0.2

 Note: When using the macro assessment method, R_Volume and

R_Effect refer to the entire suite of artifacts developed during that

phase.

Artifact reuse is calculated as follows:

Artifact Reuse = [(PE * R_Volume* R_Effect)Design +

(PE * R_Volume* R_Effect)Code +

(PE * R_Volume* R_Effect)Test] * 100

 = [(0.4 * 0.6 * 0.3) +

(0.25 * 0.8 * 0.2) +

(0.35 * 0.5 * 0.2)] * 100

 = [0.07 + 0.04 + 0.04]* 100

 = 15%

35 | CMU/SEI-2008-TR-012

Artifact reuse:

micro

assessment

When a micro assessment method is used, artifact reuse is estimated by

Artifact Reuse =
Designii

m

1i

i PE)*R_Effect *R_Volume * PE(Artifact_ +

Codeii

n

1i

i PE)*R_Effect *R_Volume * PE(Artifact_ +

Testii

p

1i

i PE)*R_Effect *R_Volume * PE(Artifact_

where

PEPhase is the proportion of total project effort that is

required to develop artifacts in a project life cycle

phase and

 PEDesign = 0.40

PECode = 0.25

PETest = 0.35

Artififact_PEi is the proportion of the life-cycle phase effort that

is required to develop Artifact i;

R_Volumei is the reuse volume that is assigned to Artifact i;

R_Effecti is the reuse effectiveness rating that is assigned to

Artifact i;

m is the number of artifacts being evaluated for the

design phase;

n is the number of artifacts being evaluated for the

code phase; and

p is the number of artifacts being evaluated for the

test phase

36 | CMU/SEI-2008-TR-012

Example:

micro

assessment

A project manager (with input from the project staff) used the micro

assessment method for assessing artifact reuse. Each of the artifacts

generated during the project was evaluated and assigned a reuse volume

rating and a reuse effectiveness rating using this table as guidance.

R
eu

se
 V

o
lu

m
e If the volume of reuse is

perceived to be ...

Use a percent in this range to

assign reuse volume

High 67 – 100%

Medium 34 – 66%

Low 1 – 33%

R
eu

se
 E

ff
ec

ti
v
en

es
s If the degree of modification

is ...

Use this value to characterize

effectiveness

None 100%

Low 66 – 99%

Moderate 33 – 65%

Significant 1 – 32%

 The results were tabulated and appear below.

Phase Artifact Artifact_PE Reuse

Volume

(R_Volume)

Reuse

Effectiveness

(R_Effect)

PE

Design Concept/architecture 0.17 0.2 0.3

0.4
Detailed design doc 0.60 0.3 0.1

Design validation 0.06 0.3 0.1

Other docs 0.2 0.5 0.6

Code Reused code 0.95 0.25 1.0
0.25

Other docs 0.05 0.2 0.3

Test Test plans 0.10 0.2 0.6

0.35

Test procedures 0.04 0.2 0.7

Test reports 0.13 0.2 0.1

Test drivers 0.25 0.2 0.2

Other docs 0.05 0.3 0.3

Other activities 0.43 n/a n/a n/a

37 | CMU/SEI-2008-TR-012

Example:

micro

assessment,

continued

Overall artifact reuse for the project is calculated as follows:

Artifact Reuse =
Designii

m

1i

i PE)*R_Effect *R_Volume * PE(Artifact_ +

Codeii

n

1i

i PE)*R_Effect *R_Volume * PE(Artifact_ +

Testii

p

1i

i PE)*R_Effect *R_Volume * PE(Artifact_

 = (0.17 * 0.2 * 0.3 * 0.4) +

(0.60 * 0.3 * 0.1 * 0.4) +

(0.06 * 0.3) * 0.1 * 0.4) +

(0.2 * 0.5 * 0.6 * 0.4)

+

(0.95 * 0.25 * 1.0 * 0.25) +

(0.05 * 0.2 * 0.3 * 0.25)

+

(0.10 * 0.2 * 0.6 * 0.35) + (0.04 * 0.2 * 0.7 * 0.35) +

(0.13 * 0.2 * 0.1 * 0.35) + (0.25 * 0.2 * 0.2 *

0.35)+(0.05 * 0.3 * 0.3 * 0.35)

 = (0.00408 + 0.0072 + 0.00072 + 0.024) +

(0.059375 + 0.00075) +

(0.0042 + 0.00196 + 0.00091 + 0.0035 + 0.001575)

 = 0.10827 ≈ 0.11

38 | CMU/SEI-2008-TR-012

4.3 Project Type

Alias Development type

Definition Project type is a classification that characterizes a project as belonging to

one of the following type and subtype categories.

Type Subtype Description

New software n/a Newly developed software that does not

include a preexisting base of previously

developed software.

Modifications

of existing

software

Enhancement Adding, changing, or deleting

functionality to a preexisting

application.

Maintenance Enhancement such as repairing defects,

code restructuring, performance tuning,

or other changes that are not directly

related to changing the functionality of

the application.

Conversion Conversion of source code so that

application can be ported to a different

platform. Functionality remains

unchanged.

Package

implementation

Acquiring, modifying, configuring, and

deploying a commercial off-the-shelf

(COTS) software application. No

changes made to delivered features or

functionality.

Package

customization

Acquiring, modifying, configuring, and

deploying a COTS software application.

Results in changes to delivered features

or functionality.

Reengineering Reconstructing an application based on

formal design artifacts and a preexisting

software base.

39 | CMU/SEI-2008-TR-012

4.4 Application Domain

Aliases Application purpose, application use

Definition The application domain describes the environment and role of a software

application.

The application domain of the software project is selected by choosing a

category and various subcategories (if applicable) from the taxonomy that

begins on the following page.

Diagram This diagram shows the major dimensions of the application domain

taxonomy. Each of the major dimensions is segmented into type and in some

cases, subtype, categories.

Selecting your

application

domain

When categorizing your software project application, use one of the

predefined alternatives for each of the major dimensions. In some cases,

additional subcategory selections are available.

When you believe that your application does not adequately map to one of

the predefined categories, specify ―other‖ and list the category of your

choice. In this way, the application domain taxonomy can be improved and

expanded over time.

Application Domain

Implementation
Technology

Functional
Approach

EnterpriseMarket or
Industry

40 | CMU/SEI-2008-TR-012

Application

domain

taxonomy

The table below lists an application domain taxonomy for categorizing

software project application domains.

This taxonomy was generated by synthesizing and adapting previous work

conducted in the area of application domain taxonomies [Glass 1995, Reifer

1990].

Dimension Type Subtype

Market/Industry

Agriculture

Computer/Software

Educational

Energy

Engineering/Construction/Architecture

Entertainment

Financial/Banking

Federal Government – non-military

State or Local Government

Home/Consumer

Industrial/Manufacturing

Insurance

Legal

Media/Publishing

Medical/Healthcare

Military/Defense

Air Force

Army

Navy

Marines

Coast Guard

Other

Nonprofit Institutions

Real Estate

Retail/Wholesale/Distribution

Scientific

Telecommunications

Table continues on next page

41 | CMU/SEI-2008-TR-012

Dimension Type Subtype

Market/Industry,

continued

Transportation

Automotive

Aviation

Rail

Naval

Space

Other

Utilities

Other

Enterprise

Sales

Contract Management

Sales Readiness Software

Other

Marketing
Survey Management

Other

Management

Project Management

Estimation

Other

Distribution/Supply Chain

Human Resources

Finance

Customer/Technical

Support

Help desk software

Other

Information Technology

Data processing

Business Systems

Management Information

Systems (MIS)

Customer Relationship

Management (CRM)

Human Resource (HR)

Systems

Office Automation

System (Administration)

Software

Education/Training

Classroom Management

Training Management

Other

Manufacturing and

production

Table continues on next page

42 | CMU/SEI-2008-TR-012

Dimension Type Subtype

Enterprise,

continued

Command and Control

(C2)

Air Defense Systems

Air traffic control systems

Mission-critical – ground

Missile defense systems

Operations/command center

Satellite ground stations

Tactical data systems

Warning systems

Other

Intelligence, Surveillance,

Reconnaissance (ISR)

Radar systems

Satellite software

Encryption

Other

Controls and Displays
Heads-Up Display (HUD)

Other

Weapons Systems

Electronic Warfare

Fire control

Other

Navigation and Guidance

Identify Friend or Foe (IFF)

Auto-pilot software

Guidance systems

Inertial navigation systems

Other

Telecommunications

Communications systems

Modems/transmission systems

Networking systems

Switching systems

Wireless phone software

Teleconferencing

Videoconferencing

Other

Automation/Process

Control

Chemical

Manufacturing

Printing and publishing

Other

Simulation

Aircrew trainers

Environmental simulators

War-gaming simulators

Other

Table continues on next page

43 | CMU/SEI-2008-TR-012

Dimension Type Subtype

Enterprise,

continued

Consumer

Entertainment

Tax software

Home office software

Other

Internet
Web-based training

On-line shopping

Functional

Approach

Signal Processing

Transaction

Processing/Database

Knowledge-Based System

Rule-Based System

Virtual Reality

Robotics

Simulation and Modeling

Other

Implementation

Technology

Object-oriented

Client-server

Parallel processing

Distributed computing

Embedded

Firmware

COTS/GOTS

Other

44 | CMU/SEI-2008-TR-012

4.5 Average Team Size

Aliases Project staff size, average project staff size

Definition Average team size is the average number of individuals allocated to the

project over the course of the project life cycle.

Average size may be calculated by (a) average headcount method, or (b)

full-time equivalent (FTE) method.

(a) Average headcount method:

Average team size for a project of n months duration is calculated

as follows

Average Team Size =
n

CountMember Team
n

1i

i

where

Team Member Counti is the number of project staff members who

work during month i of the project; and

n is the duration of the project in months.

(b) Full-time equivalent method:

Average Team Size =

where

Project Effort is as defined in Section 3.1 of this

document;

Project Length is the duration of the project in months.

When specifying a value for Average Team Size, the method for calculating

must also be specified.

What is FTE? Full time equivalent (FTE) is a way to measure a worker's involvement in a

project. An FTE of 1.0 means that the person is equivalent to a full-time

worker.

In the U.S. Federal government, FTE is defined by the Office of

Management and Budget (OMB) as a manpower measure used by the DoD

to represent a year’s worth of employee effort that equals 1,776 productive

45 | CMU/SEI-2008-TR-012

work hours, excluding holidays and leave [OMB 2003].

For example, if the work year is defined as 1,776 hours, then one worker

occupying a paid full time job all year would consume one FTE. Two

employees working for 888 hours each would consume one FTE between

the two of them.

Example:

Average

headcount

method

Consider a five-month project with team members listed in the table below.

An ―X‖ denotes that the team member worked during that particular month.

 Month

 Team member 1 2 3 4 5

1 Project Manager X X X X X

2 Requirements Analyst X X

3 Software Developer X X X X X

4 Software Developer X X X X X

5 Software Developer X X X

6 Software Developer X X X

7 Software Developer X X

8 Software Developer X X

9 Software Tester X X

10 Software Tester X

11 Quality Assurance X X X X X

 Total 5 5 6 9 10

Therefore,

Average Team Size =
n

CountMember Team
n

1i

i

 =

46 | CMU/SEI-2008-TR-012

Example:

FTE method

Project staff members recorded how much time they worked on a four-

month long project.

Staff member March April May June

Project Manager 165 157.5 165 157.5

Software Developer 165 157.5 165 206

Software Developer 40.5 80 120 206

Software Developer 38 80 110 206

Software Tester 4 4 30 157.5

Quality Assurance 4 4 15 15

Subtotals 416.5 483 605 948

 Therefore, using the FTE method,

Average Team Size =

 = = = 4.1

47 | CMU/SEI-2008-TR-012

4.6 Maximum Team Size

Alias Maximum staff size

Definition Maximum team size is the highest number of individuals that are allocated to

the project over the course of the project life cycle.

Maximum team size for a project of n months duration is calculated as

follows

Maximum Team Size = Max(xi ... xn)

where

xi is the size of project team that worked at least 40 hours

during month i of the project, where i is a positive integer

in the range (1, n); and

n is the duration of the project in months.

Example Team members and their monthly resource allocations for a five-month

project are listed in the table below.

 Month

 Team member 1 2 3 4 5

1 Project Manager X X X X X

2 Requirements Analyst X X

3 Software Developer X X X X X

4 Software Developer X X X X X

5 Software Developer X X X

6 Software Developer X X X

7 Software Developer X X

8 Software Developer X X

9 Software Tester X X

10 Software Tester X

11 Quality Assurance X X X X X

 Total 5 5 6 9 10

48 | CMU/SEI-2008-TR-012

Example,

continued

The maximum team size is

Maximum Team Size = Max(xi ...xn,)

 = Max (5, 5, 6, 9, 10)

 = 10

49 | CMU/SEI-2008-TR-012

4.7 Team Expertise

Aliases Developers' expertise, personnel expertise, technical expertise.

Definition Team expertise is a 5-tuple of measures of the proficiency of the project

team during each phase of the software development life cycle. The measure

is a subjective one based on the informed expert judgment of those who

perform the assessment.

The team expertise measure for each phase is an integer in the range (1 to 5)

where 1 represents novice proficiency ability and 5 represents expert

proficiency.

TE = (TEreq, TEarch, TEdd, TEcode, TEst)

where:

TEreq is expertise rating for team members who contribute to the

Concept and Requirements Analysis Phase

TEarch is expertise rating for team members who contribute to

Architectural and/or High-Level Design Phase

TEdd is expertise rating for team members who contribute to

Detailed Design Phase

TEcode is expertise rating for Code Construction and Unit Testing

Phase

TEst is expertise rating for team members who contribute to

System Test Phase

Rating scale This table provides simple guidance for mapping the integer rating scale.

Rating Description of team expertise

5 All experts

4 Mostly experts & some novices

3 Some experts & some novices

2 Mostly novices & some experts

1 All novices

50 | CMU/SEI-2008-TR-012

Guidance The following steps provide guidance for assigning team expertise:

1. Select a life-cycle phase.

2. Consider the team in its entirety for that phase. Make an overall

judgment of the team’s expertise and assign the rating for that

phase. (This is the rating for the life-cycle phase under

consideration.)

3. Select the next life-cycle phase and repeat from #2.

Example A project manager assessed the technical expertise of the project team

during each phase of the project.

An ―X‖ within a cell indicates that the individual was considered part of the

project manager’s assessment for a particular life-cycle phase.

The project manager considered the team that participated in each phase and

assigned a rating for each. The rating is listed in the last row of the table.

 Phase

 Team member Req. Arch. DD Code ST

1 Project Manager X X X X X

2 Requirements Analyst X

3 Software Developer 1 X X X X X

4 Software Developer 2 X X X X X

5 Software Developer 3 X X X X

6 Software Developer 4 X X X

7 Software Developer 5 X X X

8 Software Developer 6 X X X

9 Software Tester 1 X X

10 Software Tester 2 X X

11 Quality Assurance

 Team Expertise Rating 5 5 3 3 3

Example,

continued

Therefore,

TE = (TEreq, TEarch, TEdd, TEcode, TEst)

 = (5, 5, 3, 3, 3)

51 | CMU/SEI-2008-TR-012

4.8 Process Maturity

Aliases Software process maturity, capability, organizational capability

Definition Process maturity is the extent to which a project's processes are explicitly

defined, managed, measured, and controlled.

Explanation In the broad arena of process maturity appraisal, a number of standards and

models are used to assess process maturity. Some of the more popular

approaches include the following:

• The Carnegie Mellon
®

SEI CMMI
®
 framework

• ISO 9001

• ITIL

• ISO 15504 (SPICE)

The approaches listed above use different rating schemes to indicate the

degree of process maturity. In ISO 9001, process maturity is assessed as

(a) compliancy or (b) non-compliancy. For the other listed approaches, a

level is assigned to an organization (or project) as an indicator of process

maturity.

A maturity level is a defined evolutionary plateau for organizational process

improvement. The maturity levels are measured by the achievement of the

goals associated with each predefined set of process areas.

Quite often, process maturity is assessed for the organization to which a

project belongs. When that is the case, it is assumed that the project

processes share the maturity rating of the organization.

The remainder of this section describes the rating scheme for each of the

process maturity models listed above.

®
 CMM and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. ITIL is a

registered trademark and a registered community trademark of the Office of Government Commerce and is

registered in the U.S. Patent and Trademark Office.

52 | CMU/SEI-2008-TR-012

CMMI
13

 The maturity level is the degree of process improvement across a predefined

set of process areas in which all goals in the set are attained. There are five

maturity levels, each a layer in the foundation for ongoing process

improvement, designated by the numbers 1 through 5 [SEI 2006, Chrissis

2006].

Maturity Level Category

1 Initial

2 Managed

3 Defined

4 Quantitatively Managed

5 Optimizing

 CMMI-based process maturity is defined as a 2-tuple, (x, y) where:

x is the maturity level and x {1, 2, 3, 4, 5};

y is the year that an appraisal was conducted that established the

maturity level

13

 CMMI replaced the CMM for Software which is no longer supported by the SEI and should not be used for rating

process maturity. The CMM for Software included a rating scale similar to that of CMMI, but used different criteria.

When using process maturity data, it is important to know which model was used as the criteria for making the

rating. Some historical data on process maturity may reflect ratings against the CMM for Software.

53 | CMU/SEI-2008-TR-012

ISO 9001

series

ISO 9001 is part of the ISO 9000 family of standards for quality

management systems. ISO 9000 is maintained by ISO, the International

Organization for Standardization and is administered by accreditation and

certification bodies [ISO 2000].

ISO 9000 is composed of the following sections:

 ISO 9000:2000

Quality management systems—fundamentals and vocabulary.

Covers the basics of what quality management systems are and also

contains the core language of the ISO 9000 series of standards. The

latest version is ISO 9000:2005.

 ISO 9001 Quality management systems

Requirements. Intended for use in any organization that designs,

develops, manufactures, installs or services any product or provides

any form of service. It provides a number of requirements that an

organization needs to fulfill if it is to achieve customer satisfaction

through consistent products and services that meet customer

expectations.

 ISO 9004 Quality management systems

Guidelines for performance improvements. Addresses continual

improvement. This document provides advice on what can be done

to enhance a mature system.

A company or organization that has been independently audited and

certified to be in conformance with ISO 9001 may publicly state that it is

"ISO 9001 certified" or "ISO 9001 registered." Certification to an ISO 9000

standard does not guarantee the compliance (and therefore the quality) of

end products and services; rather, it certifies that consistent business

processes are being applied.

ISO 9001-based process maturity is defined as a 2-tuple, (x, y) where

x is compliant if the project's organization is compliant with ISO

9000
14

 and null if organization is either non-compliant or did not

use this method for assessing process maturity.

y is the year that the project's organization was certified as being

compliant with ISO 9000.

14

 It is usually sufficient to understand that when an organization claims to be "ISO 9000 compliant," it means they

conform to ISO 9001.

http://en.wikipedia.org/wiki/Standardisation
http://en.wikipedia.org/wiki/Quality_management_system
http://en.wikipedia.org/wiki/Quality_management_system
http://en.wikipedia.org/wiki/Quality_management_system
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Organization_for_Standardization

54 | CMU/SEI-2008-TR-012

ITIL The Information Technology Infrastructure Library (ITIL) is a framework of

best practice approaches intended to facilitate the delivery of high-quality

information technology (IT) services. ITIL outlines an extensive set of

management procedures that are intended to support businesses in achieving

both quality and value, in a financial sense, in IT operations [OGC 2007].

IT Service Support Processes IT Service Delivery Processes

Service Desk (SD) Service Level Management

Configuration Management (CON) Availability Management

Incident Management (IM) Capacity Management

Problem Management (PM) Financial Management

Change Management (CHA) IT Service Continuity Management

Release Management (RM)

 Each of the above process areas can be assessed and assigned a maturity

rating as follows:

Level Maturity

0 Absence

1 Initiation

2 Awareness

3 Control

4 Integration

5 Optimization

 ITIL certifications are managed by the ITIL Certification Management

Board (ICMB) which is comprised of the OGC, IT Service Management

Forum (ITSMF) International, and two examinations institutes.

Organizations or a management system may not be certified as ITIL-

compliant. However, an organization that has implemented ITIL guidance in

IT service management (ITSM) may be able to achieve compliance with and

seek certification under ISO/IEC 20000.

ITIL-based process maturity is defined for each of the IT Service Support

Processes and IT Service Delivery Processes by assigning a maturity level

rating x to each process area (i.e., IT Service Support Processes and IT

Service Delivery Processes) where x {0, 1, 2, 3, 4, 5}. Also, the data-

provider must provide the year that the project's organization was assessed

using the ITIL-based assessment method.

55 | CMU/SEI-2008-TR-012

ISO/IEC 15504

(SPICE)

ISO/IEC 15504 contains a reference model that defines a process dimension

and a capability dimension [ISO 2004a, SEI 2008]

The process dimension divides processes into the following five categories:

 customer-supplier

 engineering

 supporting

 management

 organization

For each process, ISO/IEC 15504 defines a capability level on the following

scale:

Level Maturity

0 Incomplete

1 Performed

2 Managed

3 Established

4 Predictable

5 Optimizing

 15504-based process maturity is defined for each of the process categories

listed above by assigning a maturity level rating x where

x {0, 1, 2, 3, 4, 5}.

Also, the data-provider must provide the year that the project's organization

was appraised using the 15504-based appraisal method.

56 | CMU/SEI-2008-TR-012

4.9 Functional Requirements Stability

Aliases Requirements volatility, scope creep, feature creep

Definition
15

 Functional requirements stability is a measure that quantifies the

cumulative degree to which the requirements changed throughout the life

cycle of the project from the original requirements baseline.

Functional requirements stability (FRS) is defined as

T

CT

R

RR
FRS

where

RT is the total number of requirements that were originally

baselined at the beginning of the project; and

RC is the total number of changes to the original baselined

requirements and

 RC = Ra + Rm + Rr

 where

Ra is the number of new requirements added to the

original baselined requirements specification

Rm is the number of requirements modified in the

original baselined requirements specification

Rr is the number of requirements removed from the

original baselined requirements specification

Interpretation The maximum value of FRS is 1.0 and would indicate complete stability of

the functional requirements. Decreasing values of FRS indicate increasing

instability of the requirements.

15

 This definition has been adapted from Felici [Felici 2003].

57 | CMU/SEI-2008-TR-012

Functional

requirements

vs. user

requirements

This definition distinguishes functional requirements from user requirements.

The measure addresses functional requirements only.

User requirements are sometimes referred to as business requirements and

they are requirements governing the project's deliverable or product as

expressed by the users. User requirements are typically expressed in terms of

broad outcomes the user or business requires, rather than specific functions

the software systems may perform.

Functional Requirements describe what the system, process, or

product/service must do in order to fulfill the user requirements.

Example The original baselined functional requirements specification contained 90

requirements.

Over the course of the project life cycle, two new requirements were added,

ten of the original requirements were modified, and three of the

requirements were removed. Therefore,

RT = 90,

Ra = 2,

Rm = 10,

Rr = 3,

RC = Ra + Rm + Rr = 2 + 10 + 3 = 15, and

58 | CMU/SEI-2008-TR-012

59 | CMU/SEI-2008-TR-012

5 Using the Performance Measures and Influence Factors

Introduction In this section we present several scenarios that demonstrate how the

performance measures and influence factors can be used by an organization

and the benefits derived from their use.

The need Before valid measurement comparison and benchmarking can be conducted,

common operational definitions for the measures must be in place. Herein

lies one of the major obstacles that has prevented organizations from being

able to effectively compare software project performance among projects

within their organization and with projects outside of their organization.

Using the

definitions

We believe that this data specification can be used by organizations that

 are beginning measurement programs

 want to standardize the way measures are defined across the

enterprise

 want to compare their performance to projects that have submitted

their data to proprietary and public project performance repositories

 want to conduct benchmarking studies between projects within

and/or outside their organizations

Each of these cases is described in more detail in this section.

Standardization

within an

enterprise

Large organizations can benefit from adopting a standard set of software

project performance measures. By doing so,

 personnel within the organization do not need to relearn new

definitions as they move from one project to the next

 the organization could compare performance among projects

60 | CMU/SEI-2008-TR-012

Beginning a

measurement

program

Organizations that are beginning a measurement program are often perplexed

as to what they should begin to measure and how those measures should be

defined. Organizations should always begin by using an approach such as the

goal-driven measurement method [Park 1996, Basili 1994] to assure that

measures are addressing the key goals of the organization. However, we

believe that any organization that develops software will want to include the

set of measures and factors identified in this report due to the intrinsic ability

of these measures to characterize project performance.

Measurement

comparison

Organizations using the definitions in this document can compare their

software project performance measures to measures that are included in

existing software project performance data repositories.

The definitions in this document were arrived at through a consensus-based

process involving many of the leading organizations in the area of software

project performance measurement. Many of the collaborators in this

definition project have their own proprietary repositories that hold project

performance measurement information from thousands of software projects

[David 2008, Galorath 2008, Price 2008, QSM 2008, SPR 2008, 4Sum 2008].

Also, the International Software Benchmarking Standards Group (ISBSG)

maintains a public repository of software project performance measures

[ISBSG 2008]. However, each organization defines the measures differently,

making it difficult or impossible to compare measures among these

repositories.
16

Collaborators that participated in this project and possess repositories were

asked to characterize whether data from their repository could be matched

with the performance measures and influence factors defined in this

document. Table 4 is a summary of the responses.
17

16

 For this reason, collaborators in this definition project believe that significant benefit would result for the software

community if common definitions are adopted for performance measures.

17
 In some cases, collaborators reported that although they have not been collecting the particular influence factor or

performance measure, they believe that there should be encouragement to do so because useful insights could

be realized by capturing the information.

61 | CMU/SEI-2008-TR-012

 Collaborating organizations that possess data repository

 Data Item #1 #2 #3 #4 #5 #6

In
fl

u
en

ce
 F

ac
to

rs

Size

Artifact reuse

Project type

Application domain

Average team size

Maximum team size

Team expertise

Process maturity

Functional requirements stability

In
d

ic
at

o
rs

Project effort

Productivity

Project duration

Schedule predictability

Requirements completion ratio

Post-release defect density

Table 4. Repositories that possess data that map to the definitions specified in this document.

Support for

benchmarking

This document provides a set of performance measures and influence factors

that can be used as the nominal set of measures for performance comparison

within a software project benchmarking study.

Benchmarking is an improvement approach that relies on common definitions

of performance measures so that valid comparisons can be made between the

projects that are part of the benchmarking exercise. The establishment of

common performance measures is a prerequisite to conducting

benchmarking. See the appendix for a more detailed discussion of

benchmarking.

Data collected

Data partially collected
Don’t know

62 | CMU/SEI-2008-TR-012

63 | CMU/SEI-2008-TR-012

6 Request for Feedback

The SEI is interested in collecting feedback from and collaborating with organizations that

intend to implement or are implementing the software project performance measures and

influence factors that are specified in this document. If you would like to provide feedback

or discuss collaboration, contact customer-relations@sei.cmu.edu.

mailto:relations@sei.cmu.edu

64 | CMU/SEI-2008-TR-012

65 | CMU/SEI-2008-TR-012

Appendix: Benchmarks and Benchmarking

What are

benchmarks?

Performance measurement and the concept of a

benchmark go hand-in-hand. The term

―benchmark‖ comes from geological surveying

and means to take a measurement in comparison

to a reference point.
18

In the process improvement lexicon, a

benchmark is a best-in-class performance or

achievement. This achievement is then used as a

reference point against which similar processes are compared or judged.

What is

benchmarking?

There is a distinction between the term ―benchmark‖ (noun), and the process

of ―benchmarking‖ (verb). While a benchmark is a measure, the process of

benchmarking is an ongoing improvement process that compares a project’s

internal practices, processes, and methods to projects from other

organizations. The purpose of benchmarking is to identify the best practices

that led the project that owns the benchmark to achieve stellar performance.

Once identified and characterized, these best practices are then adapted to

achieve similar process improvements and concomitant enhanced

performance.

The benchmarking approach to process

improvement originated at Xerox

during the early 1980s as part of the

company’s Total Quality Management

(TQM) program called ―Leadership

Through Quality.‖ Following their

initial big successes using

benchmarking, senior management

required all organization within Xerox

to pursue benchmarking. Robert C.

Camp of Xerox is often referred to as

the Father of Benchmarking as he is

credited with developing the first

formal, documented process for

benchmarking [Camp 1989, Camp

1995, Camp 1998].

18

 The term originated as a surveyor's mark made on a stationary object of previously determined position and

elevation and used as a reference point in tidal observations and surveys [AHD 2006].

Bench-mark-ing

The process of
improving performance
by continuously
identifying,
understanding, and
adapting outstanding
practices and processes
found inside and
outside the
organization.

- American Productivity
& Quality Center

66 | CMU/SEI-2008-TR-012

What is

benchmarking?

–continued

Under the auspices of the American Productivity & Quality Center’s

International Benchmarking Clearinghouse, a guidebook has been developed

that offers basic information about the benchmarking process [APQC 1993].

Many companies have adapted the generic benchmarking process model in

their own ways. Recognizing that it is difficult to communicate among

companies that use different approaches to benchmarking, four companies

that are active benchmarkers created a four-quadrant model to explain what

benchmarking is about. This template is adapted from APQC’s

Benchmarking Guidebook and is illustrated in Figure 3 [APQC 1993].

Figure 3. Benchmarking Process Template

This template establishes the general context model for a process that

indicates the specific actions to complete the benchmarking process. The four

quadrants are linked by the processes of data collection and analysis of

performance measures. Enablers refer to the processes, practices, or methods

that make possible the best-in-class performance. While performance

benchmarks measure the successful execution of a process, enablers tell the

reasons behind the successful implementation: the system, method,

document, training, or techniques that facilitate the implementation of the

process [APQC 1993]. Critical success factors are the characteristics,

conditions, or variables that have a direct influence on your customer’s

satisfaction (and therefore your success).

Table 5 shows examples of the questions a team would ask for each of the

quadrants.

1.What to benchmark? 2.How do we do it?

3.Who is the best? 4.How do they do it?

Internal
data

collection

External

Our Organization

Their Organization

C
ri

ti
ca

l S
u

cc
es

s
Fa

ct
o

rs

E
n

a
b

le
rs

Data analysis

67 | CMU/SEI-2008-TR-012

What is

benchmarking?

–continued

Quadrant Questions that are asked

1. What to

benchmark?
 Have you identified critical success factors for

your organization?

 Have you selected the right thing to tackle (e.g.,

problem area to address, result to achieve)?

 Will a change in the targeted process be perceived

by customers as a benefit?

2. How do we do

it?
 Have you mapped out your benchmarking process,

and do you understand how you are doing it?

 Will you be able to compare your measurements to

others and make sense of the result?

3. Who is best-

in-class?
 Which organizations perform this process better

than you do?

4. How do they

do it?
 What is their process?

 What enables the performance of their process?

Table 5. Questions for each quadrant of the Benchmarking Process

Template.

AQPC identifies four ways that benchmarking can be segmented according

to the types of comparisons that are made during a particular study [APQC

1993].

 Internal studies compare similar operations within different units

of an organization. While this simplifies implementation and data

access, it yields the lowest potential for significant breakthroughs.

 Competitive studies target specific products, processes, or

methods used by an organization's direct competitors. These types

of studies are usually conducted by a third party to sanitize

competitive information, nominalize performance to an agreed-

upon base measure, and report case study information that has been

approved by the contributing company. Competitive information is

exceptionally difficult to obtain due to the concern about disclosure

and antitrust issues.

 Functional or industry studies compare similar functions within

the same broad industry or compare organization performance with

that of industry leaders. This type of study has a good opportunity

to produce breakthrough results and provide significant

performance improvement. Because of the potential for industry

studies to become available to direct competitors, these studies are

typically conducted in the blind through a third party.

68 | CMU/SEI-2008-TR-012

What is

benchmarking?

–continued

 Generic benchmarking compares work practices or processes that

are independent of industry. This method is considered by some to

be the most innovative and can result in changed paradigms for

reengineering specific operations.

Various process models have been developed to describe benchmarking.

APQC has studied companies that have strong benchmarking initiatives.

Although there are differences between the models, they all follow a similar

pattern. The one observation made is that most of the specific company

models map into the Deming Cycle of Plan, Do, Check/Measure, Act.
19

 The

Xerox Benchmarking Process Model is summarized in Figure 4. In his book

titled The Benchmarking Book, Spendolini describes a five-stage process

that is very similar, but summarized at a higher level. The stages are (1)

Determine what to benchmark, (2) Form a benchmarking team, (3) Identify

benchmark partners,

(4) Collect and analyze

benchmarking information,

and (5) Take action

[Spendolini 1992].

Benchmarking is a well-

established approach and

there are many reference

sources to help

organizations get started.

Benchmarking is

recognized as an important

tool in the process

improvement toolbox of

Six Sigma and other

quality improvement

approaches [Isixsigma

2007, Breyfogle 2003,

Juran 1998].

19

 The Deming Cycle in quality is named after its leading proponent, Dr. W. Edwards Deming [Deming .1986].

Figure 4. Xerox Benchmarking Process

Model mapped to Deming Cycle.

1. Identify process

2. Identify partner

3. Collect data

4. Determine gap

5. Project future performance

6. Gain support

7. Set goals

8. Develop plans

9. Implement plans

8. Recalibrate benchmarks

Plan

Do

Check
(Measure)

Act

69 | CMU/SEI-2008-TR-012

Benefits of

benchmarking

The purpose of benchmarking is to adapt stellar processes and practices

from leading organizations so that the true potential of the organization can

be realized. This is shown conceptually in Figure 5.

A research study conducted by APQC’s International Benchmarking

Clearinghouse demonstrated benchmarking's tremendous leverage. More

than 30 organizations reported an average $76 million first-year payback

from their most successful benchmarking project. Among the most

experienced benchmarkers, the average payback soared to $189 million

[APQC 2008a]
20

.

Figure 5. Purpose of benchmarking is to close the gap between actual performance and

potential performance.

20

 Obtaining this document through downloading requires registration. However, registration is free.

Constraints to

Success

L
e

v
e

l o
f

P
e

rf
o

rm
a

n
c
e

Time

P
e

rf
o

rm
a

n
c
e

 G
a

p

• Cost

• Quality

• Time

Actual

Potential

70 | CMU/SEI-2008-TR-012

71 | CMU/SEI-2008-TR-012

Glossary

Adjusted function point

count (AFP)

The unadjusted function point count multiplied by the value

adjustment factor [ISO 2003a].

Application A cohesive collection of automated procedures and data supporting a

business objective [ISO 2003a].

Application software Software designed to help users perform particular tasks or handle

particular types of problems, as distinct from software that controls

the computer itself [ISO 2004b].

Architectural design

phase

The life-cycle phase in which a system's general architecture is

developed, thereby fulfilling the requirements laid down by the

software requirements document and detailing the implementation

plan in response to it [ISO 2007].

Artifact Any piece of software (i.e., models/descriptions) developed and used

during software development and maintenance. Examples are

requirements specifications, architecture and design models, source

and executable code (i.e., programs), configuration directives, test

data, test scripts, process models, project plans, various

documentation etc. [Conradi 2003].

Assessment process A determination of the extent to which the organization's standard

processes contribute to the achievement of its business goals and to

help the organization focus on the need for continuous process

improvement [ISO 2004a].

Benchmark A measured, best-in-class achievement; a reference or measurement

standard for comparison; this performance level is recognized as the

standard of excellence for a specific business process [APQC 2008b].

Benchmarking The process of identifying, learning, and adapting outstanding

practices and processes from any organization, anywhere in the

world, to help an organization improve its performance.

Benchmarking gathers the tacit knowledge—the know-how,

judgments, and enablers—that explicit knowledge often misses

[APQC 2008b].

Logical line of code

(LLC)

A single software instruction, having a defined beginning and ending

independent of any relationship to the physical lines on which it is

recorded or printed. Logical source statements are used to measure

software size in ways that are independent of the physical formats in

which the instructions appear [Park 1992].

72 | CMU/SEI-2008-TR-012

Code In software engineering, computer instructions and data definitions

expressed in a programming language or in a form output by an

assembler, compiler, or other translator [ISO 2007].

Physical line of code A single line of source code. Note that a logical line of code may

consist of multiple physical lines of code [Park 1992].

Blank lines Lines in a source listing or display that have no visible textual

symbols [Park 1992].

Comment Textual strings, lines, or statements that have no effect on compiler or

program operations. Usually designated or delimited by special

symbols. Omitting or changing comments has no effect on program

logic or data structures [Park 1992].

Commercial-off-the-

shelf (COTS)

Software defined by a market-driven need, commercially available,

and whose fitness for use has been demonstrated by a broad spectrum

of commercial users [ISO 2006a].

Computer instruction A statement in a programming language, specifying an operation to

be performed by a computer and the addresses or values of the

associated operands [ISO 2007].

COTS Commercial-off-the-shelf [ISO 2000c].

CPM Counting Practices International Standard [ISO 2005a].

Data A representation of facts, concepts, or instructions in a manner

suitable for communication, interpretation, or processing by humans

or by automatic means [ISO 2007].

Data provider An individual or organization that is a source of data [ISO 2002a].

Defect A problem which, if not corrected, could cause an application to

either fail or to produce incorrect results [ISO 2003a].

Design The process of defining the software architecture, components,

modules, interfaces, and data for a software system to satisfy

specified requirements [ISO 2007].

Design architecture An arrangement of design elements that provides the design solution

for a product or life-cycle process intended to satisfy the functional

architecture and the requirements baseline [IEEE 1998a].

Design phase The period in the software life cycle during which definitions for

architecture, software components, interfaces, and data are created,

documented, and verified to satisfy requirements [ISO 2007].

Detailed design The process of refining and expanding the preliminary design of a

system or component to the extent that the design is sufficiently

complete to be implemented [ISO 2007].

73 | CMU/SEI-2008-TR-012

Detailed design

description

A document that describes the exact detailed configuration of a

computer program [ISO 2007].

Detailed design phase The software development life cycle phase during which the detailed

design process takes place, using the software system design and

software architecture from the previous phase (architectural design) to

produce the detailed logic for each unit such that it is ready for coding

[ISO 2007].

Development The specification, construction, testing, and delivery of a new

information system [ISO 2003a].

Development project A project in which a completely new application is realized [ISO

2005a].

Direct delivered team

hours

Team hours that directly contribute to defining or creating outputs

(source statements, function points, documents, etc.) that are

delivered to the customer.

Direct non-delivered

team hours

Direct team hours resulting in production of outputs (source

statements, function points, documents, etc.) that are not delivered

with the final product.

Documentation A collection of documents on a given subject ; any written or pictorial

information describing, defining, specifying, reporting, or certifying

activities, requirements, procedures, or results; the process of

generating or revising a document [ISO 2007].

Domain A distinct scope, within which common characteristics are exhibited,

common rules observed, and over which a distribution transparency is

preserved [ISO 2003b].

Enhancement The modification of an existing application [ISO 2003a].

The activities carried out for an application that change the

specifications of the application and that also usually change the

number of function points as a result [ISO 2005a].

Enhancement project A project in which enhancements are made to an existing application

[ISO 2005a].

Enterprise A company, business, firm, partnership, corporation, or governmental

agency. An organization may be involved in several enterprises and

an enterprise may involve one or more organizations [PMI 2004].

Environment The circumstances, objects, and conditions that surround a system to

be built [IEEE 1988b].

74 | CMU/SEI-2008-TR-012

Expert judgment Judgment provided based upon expertise in an application area,

knowledge area, discipline, industry, etc. as appropriate for the

activity being performed. Such expertise may be provided by any

group or person with specialized education, knowledge, skill,

experience, or training, and is available from many sources,

including: other units within the performing organization; consultants;

stakeholders, including customers; professional and technical

associations; and industry groups [PMI 2004].

Function point (FP) A measure that represents the functional size of application software

[ISO 2003a].

Function point analysis

(FPA)

A standard method for measuring software development and

maintenance from the customer's point of view [ISO 2003a].

Function point count The function point measurement of a particular application or project

[ISO 2003a].

Functional

requirements

Description of what the system, process, or product/service must do

in order to fulfill the user requirements.

Indicator A measure that provides an estimate or evaluation of specified

attributes derived from a model with respect to defined information

needs [ISO 2005b]

Installation phase The period of time in the software life cycle during which a software

product is integrated into its operational environment and tested in

this environment to ensure that it performs as required [ISO 2007].

Life cycle Evolution of a system, product, service, project or other human-made

entity from conception through retirement [ISO 12207].

Logical line of code

(LLC)

Source statement that measures software instructions independently

of the physical format in which they appear. Synonym is logical

source statement.[IEEE 1992].

Maintenance The process of modifying a software system or component after

delivery to correct faults, improve performance or other attributes, or

adapt to a changed environment [ISO 2007].

Maintenance

enhancement

A modification to an existing software product to satisfy a new

requirement. There are two types of software enhancements: adaptive

and perfective. A maintenance enhancement is not a software

correction [IEEE 2006a].

Maintenance project A software development project described as maintenance to correct

errors in an original requirements specification, to adapt a system to a

new environment, or to enhance a system [ISO 2007].

75 | CMU/SEI-2008-TR-012

Measure A variable to which a value is assigned as the result of measurement

[ISO 2005b].

Measurement The act or process of assigning a number or category to an entity to

describe an attribute of that entity[IEEE 1994].

Measurement method A logical sequence of operations, described generically, used in

quantifying an attribute with respect to a specified scale [ISO 2005b].

Organization A group of persons organized for some purpose or to perform some

type of work within an enterprise [PMI 2004].

Previously developed

software

Software that has been produced prior to or independent of the project

for which the plan is prepared, including software that is obtained or

purchased from outside sources [IEEE 1994].

Process A set of interrelated actions and activities performed to achieve a

specified set of products, results, or services [PMI 2004].

Process improvement Actions taken to change an organization's processes so that they more

effectively and/or efficiently meet the organization's business goals

[ISO 2004a].

Product A complete set of computer programs, procedures and associated

documentation and data designed for delivery to a user [ISO 1999].

Productivity The ratio of work product to work effort (ISO/IEC 20926:2003 -

Software Engineering) [ISO 2003a].

Project A temporary endeavor undertaken to create a unique product, service,

or result [PMI 2004].

Project life cycle A collection of generally sequential project phases whose name and

number are determined by the control needs of the organization or

organizations involved in the project. A life cycle can be documented

with a methodology [PMI 2004].

Project Management

Body of Knowledge

(PMBOK)

An inclusive term that describes the sum of knowledge within the

profession of project management. As with other professions, such as

law, medicine, and accounting, the body of knowledge rests with the

practitioners and academics that apply and advance it [PMI 2004].

76 | CMU/SEI-2008-TR-012

Project phase A collection of logically related project activities, usually culminating

in the completion of a major deliverable. Project phases (also called

phases) are mainly completed sequentially, but can overlap in some

project situations. Phases can be subdivided into subphases and then

components; this hierarchy, if the project or portions of the project are

divided into phases, is contained in the work breakdown structure. A

project phase is a component of a project life cycle. A project phase is

not a project management process group [PMI 2004].

Schedule The planned dates for performing schedule activities and the planned

dates for meeting schedule milestones [PMI 2004].

Project team All the project team members, including the project management

team, the project manager, and, for some projects, the project sponsor

[PMI 2004].

Project team members The persons who report either directly or indirectly to the project

manager, and who are responsible for performing project work as a

regular part of their assigned duties [PMI 2004].

Quality The degree to which a system, component, or process meets specified

requirements; the degree to which a system, component, or process

meets customer or user needs or expectations [ISO 2007].

Requirement A condition or capability needed by a user to solve a problem or

achieve an objective [ISO 2007].

Requirements phase The period of time in the software life cycle during which the

requirements for a software product are defined and documented [ISO

2007].

Reusability The degree to which an asset can be used in more than one software

system, or in building other assets [IEEE 1999].

Reusable software

product

A software product developed for one use but having other uses, or

one developed specifically to be usable on multiple projects or in

multiple roles on one project. Examples include, but are not limited

to, COTS software products, acquirer-furnished software products,

software products in reuse libraries, and preexisting developer

software products. Each use may include all or part of the software

product and may involve its modification. This term can be applied to

any software product (for example, requirements, architectures), not

just to software itself [IEEE 1998b].

Reuse Building a software system at least partly from existing pieces to

perform a new application [ISO 2007].

77 | CMU/SEI-2008-TR-012

Reused source

statement

Unmodified source statement obtained for the product from an

external source [IEEE 1992].

Sizing The process of estimating the amount of computer storage or the

number of source lines required for a software system or component

[ISO 2007].

SLCP Software Life Cycle Processes [ISO 2004d].

SLOC, Source Lines of

Code

The number of lines of programming language code in a program

before compilation [ISO 2000b].

Software Computer programs, procedures, and possibly associated

documentation and data pertaining to the operation of a computer

system; for example, command files, job control language; includes

firmware, documentation, data, and execution control statements [ISO

2007].

Software design The use of scientific principles, technical information, and

imagination in the definition of a software system to perform pre-

specified functions with maximum economy and efficiency [ISO

2007].

Software life cycle

(SLC)

The period of time that begins when a software product is conceived

and ends when the software is no longer available for use [ISO 2007].

Software maintenance The totality of activities required to provide cost-effective support to

a software system [ISO 2006a].

Software product The set of computer programs, procedures, and possibly associated

documentation and data [ISO 2007].

Software project The set of work activities, both technical and managerial, required to

satisfy the terms and conditions of a project agreement. A software

project should have specific starting and ending dates, well-defined

objectives and constraints, established responsibilities, and a budget

and schedule. A software project may be self-contained or may be

part of a larger project. In some cases, a software project may span

only a portion of the software development cycle. In other cases, a

software project may span many years and consist of numerous

subprojects, each being a well-defined and self-contained software

project [IEEE 1998c].

Software project life

cycle (SPLC)

The portion of the entire software life cycle applicable to a specific

project; it is the sequence of activities created by mapping the

activities of IEEE Std 1074 onto a selected software project life-cycle

model (SPLCM) [IEEE 2006b].

78 | CMU/SEI-2008-TR-012

Software requirement A software capability that must be met or possessed by a system or

system component to satisfy a contract, standard, specification, or

other formally imposed document [ISO 2007].

Software requirements

phase

The software development life-cycle phase during which the

requirements for a software product, such as functional and

performance capabilities, are defined, documented, and reviewed

[ISO 2007].

Software testing The dynamic verification of the behavior of a program on a finite set

of test cases, suitably selected from the usually infinite executions

domain, against the expected behavior [ISO 2005c].

Source code Computer instructions and data definitions expressed in a form

suitable for input to an assembler, compiler, or other translator; a

source program is made up of source code [ISO 2007].

SPLC Software project life cycle [IEEE 2006b].

Staff-hour An hour of effort expended by a member of the project staff [IEEE

1992].

Statement In a programming language, a meaningful expression that defines

data, specifies program actions, or directs the assembler or compiler

[ISO 2007].

Subtype A subset of a data type, obtained by constraining the set of possible

values of the data type [ISO 2007].

Team member All the project team members, including the project management

team, the project manager and, for some projects, the project sponsor.

Synonym is project team member [PMI 2004].

Test An activity in which a system or component is executed under

specified conditions, the results are observed or recorded, and an

evaluation is made of some aspect of the system or component [ISO

2007].

Test case A documented instruction for the tester that specifies how a function

or a combination of functions shall or should be tested [ISO 1994].

Test phase The period of time in the software life cycle during which the

components of a software product are evaluated and integrated, and

the software product is evaluated to determine whether or not

requirements have been satisfied [ISO 2007].

Unadjusted function

point count (UFP)

The measure of the functionality provided to the user by the project or

application [ISO 2003a].

79 | CMU/SEI-2008-TR-012

Use case In UML, a complete task of a system that provides a measurable

result of value for an actor [ISO 2007].

Use case specification A document that describes a use case; a use case specification's

fundamental parts are the use case name, brief description,

precondition, basic flow, postcondition, and alternate flow [ISO

2007].

User requirements Description of the set of user needs for the software [ISO 2006b].

Web page A digital multimedia object as delivered to a client system. A web

page may be generated dynamically from the server side, and may

incorporate applets or other elements active on either the client or

server side [IEEE 2000].

80 | CMU/SEI-2008-TR-012

81 | CMU/SEI-2008-TR-012

References

URLs are valid as of the publication date of this document.

[Albrecht 1979]

Albrecht, Allan J. ―Measuring Application Development Productivity.‖ Proceedings of the

SHARE/GUIDE IBM Applications Development Symposium. Monterey, CA, Oct. 1979.

[AHD 2006]

Editors of the American Heritage Dictionaries. The American Heritage Dictionary of the English

Language, 4
th

 Ed. Houghton Mifflin, 2006.

[ASQ 2007]

American Society for Quality. Quality Glossary. http://www.asq.org/glossary (2007).

[APQC 1993]

American Productivity & Quality Center. The Benchmarking Management Guide. Productivity

Press, 1993.

[APQC 2008a]

American Productivity & Quality Center. Benchmarking: Leveraging Best-Practice Strategies.

http://www.apqc.org/portal/apqc/ksn?paf_gear_id=contentgearhome&paf_dm=full&pageselect=i

nclude&docid=112421 (1994-2008).

[APQC 2008b]

American Productivity & Quality Center. Glossary of Benchmarking Terms.

http://www.apqc.org/portal/apqc/ksn?paf_gear_id=contentgearhome&paf_dm=full&pageselect=d

etail&docid=119519 (1994-2008).

[Basili 1994]

Basili, V., Caldiera, G., & Rombach, H. D. ―The Goal Question Metric Approach,‖ 528-53.

Encyclopedia of Software Engineering, John Wiley & Sons, Inc., 1994.

[Breyfogle 2003]

Breyfogle, Forrest W., III. Implementing Six Sigma: Smarter Solutions
®

 Using Statistical

Methods, 2
nd

 ed. John Wiley & Sons, 2003.

[Camp 1989]

Camp, Robert C. Benchmarking: The Search for Industry Best Practices That Lead to Superior

Performance. ASQC Quality Press, 1989.

http://www.asq.org/glossary
http://www.apqc.org/portal/apqc/ksn?paf_gear_id=contentgearhome&paf_dm=full&pageselect=i
http://www.apqc.org/portal/apqc/ksn?paf_gear_id=contentgearhome&paf_dm=full&pageselect=d

82 | CMU/SEI-2008-TR-012

[Camp 1995]

Camp, Robert C. Business Process Benchmarking: Finding and Implementing Best Practices.

ASQC Quality Press, 1995.

[Camp 1998]

Camp, Robert C. Global Cases in Benchmarking: Best Practices from Organizations Around the

World. ASQ Quality Press, 1998.

[Chrissis 2006]

Chrissis, M. B., Konrad, M., & Shrum, S. CMMI: Guidelines for Process Integration and Product

Improvement, 2nd ed. New York: Addison-Wesley, 2006.

[Conradi 2003]

Conradi, Reidar. Software Engineering Mini Glossary.

http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html (2003).

[David 2008]

David Consulting Group. Performance Benchmarking.

http://www.davidconsultinggroup.com/measurement/benchmarking.aspx (2008).

[Deming 1986]

Deming, W. Edwards. Out of the Crisis. MIT Center for Advanced Engineering Study, 1986

(ISBN: 0911379010).

[Felici 2003]

Felici, Massimo. A Formal Framework for Requirements Evolution.

http://www.dirc.org.uk/publications/techreports/papers/20.pdf (2003).

[Florac 1992]

Florac, William, A. Software Quality Measurement: A Framework for Counting Problems and

Defects. (CMU/SEI-92-TR-022, ADA258556). Software Engineering Institute, Carnegie Mellon

University, 1992. http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.022.html

[Galorath 2008]

Galorath, Inc. SEER Project Management Tool Overview.

http://www.galorath.com/index.php/products/ (2008).

[Glass 1995]

Glass, R. L. & Vessey, Iris. ―Contemporary Application Domain Taxonomies.‖ IEEE Software,

(July 1995).

http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html
http://www.davidconsultinggroup.com/measurement/benchmarking.aspx
http://www.dirc.org.uk/publications/techreports/papers/20.pdf
http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.022.html
http://www.galorath.com/index.php/products

83 | CMU/SEI-2008-TR-012

[IEEE 1988a]

The Institute of Electrical and Electronics Engineers. IEEE Std 982.1-1988—IEEE Standard

Dictionary of Measures to Produce Reliable Software. The Institute of Electrical and Electronics

Engineers, 1988. http://ieeexplore.ieee.org/iel1/2752/1441/00035033.pdf

[IEEE 1988b]

The Institute of Electrical and Electronics Engineers. IEEE 1362—IEEE Guide for Information

Technology—System Definition—Concept of Operations (ConOps)Document. The Institute of

Electrical and Electronics Engineers, 1988.

http://ieeexplore.ieee.org/iel4/6166/16486/00761853.pdf

[IEEE 1992]

The Institute of Electrical and Electronics Engineers. IEEE Std 1045-1992—Standard for

Software Productivity Metrics. The Institute of Electrical and Electronics Engineers, 1992.

http://ieeexplore.ieee.org/iel1/2858/5527/00211732.pdf?arnumber=211732

[IEEE 1994]

The Institute of Electrical and Electronics Engineers. IEEE Standard for Software

Safety Plans. The Institute of Electrical and Electronics Engineers, 1984.

http://ieeexplore.ieee.org/iel1/3257/9808/00467427.pdf

[IEEE 1998a]

The Institute of Electrical and Electronics Engineers. IEEE 1220-1998—IEEE Standard for

Application and Management of the Systems Engineering Process. The Institute of Electrical and

Electronics Engineers, 1998. http://www.techstreet.com/cgi-bin/detail?product_id=22369

[IEEE 1998b]

The Institute of Electrical and Electronics Engineers. IEEE Std 1012-1998—IEEE Standard for

Software Verification and Validation. The Institute of Electrical and Electronics Engineers, 1998.

http://ieeexplore.ieee.org/iel4/5672/15185/00702332.pdf

[IEEE 1998c]

The Institute of Electrical and Electronics Engineers. IEEE Std 1058-1998—IEEE Standard for

Software Project Management Plans. The Institute of Electrical and Electronics Engineers, 1998.

http://ieeexplore.ieee.org/iel4/5978/16012/00741937.pdf

[IEEE 1999]

The Institute of Electrical and Electronics Engineers. IEEE 1517-1999—IEEE Standard for

Information Technology - Software Life Cycle Processes—Reuse Processes. The Institute of

Electrical and Electronics Engineers, 1999.

http://www.techstreet.com/cgi-bin/detail?product_id=224066

http://ieeexplore.ieee.org/iel1/2752/1441/00035033.pdf
http://ieeexplore.ieee.org/iel4/6166/16486/00761853.pdf
http://ieeexplore.ieee.org/iel1/2858/5527/00211732.pdf?arnumber=211732
http://ieeexplore.ieee.org/iel1/3257/9808/00467427.pdf
http://www.techstreet.com/cgi-bin/detail?product_id=22369
http://ieeexplore.ieee.org/iel4/5672/15185/00702332.pdf
http://ieeexplore.ieee.org/iel4/5978/16012/00741937.pdf
http://www.techstreet.com/cgi-bin/detail?product_id=224066

84 | CMU/SEI-2008-TR-012

[IEEE 2000]

The Institute of Electrical and Electronics Engineers. IEEE Std 2001™-2002—IEEE

Recommended Practice for the Internet—Web Site Engineering, Web Site Management, and Web

Site Life Cycle. The Institute of Electrical and Electronics Engineers, 2000.

http://ieeexplore.ieee.org/iel5/8449/26606/01185571.pdf

[IEEE 2006a]

The Institute of Electrical and Electronics Engineers. IEEE 14764-2006. Software Engineering—

Software Life Cycle Processes—Maintenance. The Institute of Electrical and Electronics

Engineers, 2006.

http://ieeexplore.ieee.org/iel5/11168/35960/01703974.pdf?tp=&isnumber=35960&arnumber=170

3974

[IEEE 2006b]

The Institute of Electrical and Electronics Engineers. IEEE 1074-2006—IEEE Standard for

Developing a Software Project Life Cycle Process. The Institute of Electrical and Electronics

Engineers,2006. http://www.techstreet.com/cgi-bin/detail?product_id=1277365

[IFPUG 2005]

IFPU\G Counting Practices Manual. International Function Point Users Group.

http://www.ifpug.org/publications/manual.htm, 2005.

[ISBSG 2006]

Glossary of Terms. International Software Benchmarking Standards Group (ISBSG). Glossary of

Terms, v5.9.1. http://www.isbsg.org/isbsg.nsf/weben/Glossary%20of%20Terms (2006).

[ISBSG 2008]

International Software Benchmarking Standards Group (ISBSG). Software Development and

Enhancement Repository.

http://www.isbsg.org/Isbsg.Nsf/weben/Development%20&%20Enhancement (2008).

[Isixsigma 2007]

iSixSigma.iSixSigma Dictionary. http://www.isixsigma.com/dictionary/Productivity-523.htm

(2007).

[ISO 1994]

International Organization for Standardization. ISO/IEC 12119:1994—Information technology—

Software packages—Quality requirements and testing.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=1308 (1994).

http://ieeexplore.ieee.org/iel5/8449/26606/01185571.pdf
http://ieeexplore.ieee.org/iel5/11168/35960/01703974.pdf?tp=&isnumber=35960&arnumber=170
http://www.techstreet.com/cgi-bin/detail?product_id=1277365
http://www.ifpug.org/publications/manual.htm
http://www.isbsg.org/isbsg.nsf/weben/Glossary%20of%20Terms
http://www.isbsg.org/Isbsg.Nsf/weben/Development%20&%20Enhancement
http://www.isixsigma.com/dictionary/Productivity-523.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=1308

85 | CMU/SEI-2008-TR-012

[ISO 1995]

International Organization for Standardization. ISO/IEC 12207:1995—Information technology—

Software life cycle processes.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21208 (1995).

[ISO 1999]

International Organization for Standardization. ISO/IEC 15910:1999—Information technology—

Software user documentation process.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29509 (1999).

[ISO 2000]

International Organization for Standardization. ISO 9001:2000 Quality Management Systems–

Requirements.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21823 (2000).

[ISO 2002]

International Organization for Standardization. ISO/IEC 15939:2002—Software engineering—

Software measurement process.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29572 (2002).

[ISO 2002b]

International Organization for Standardization. ISO/IEC 20968:2002—Software engineering—Mk

II Function Point Analysis—Counting Practices Manual.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35603 (2002).

[ISO 2003a]

International Organization for Standardization. ISO/IEC 20926:2003—Software engineering—

IFPUG 4.1 Unadjusted functional size measurement method—Counting practices manual.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35582 (2003).

[ISO 2003b]

International Organization for Standardization. ISO/IEC 19500-2:2003—Information

technology—Open Distributed Processing—Part 2: General Inter-ORB Protocol (GIOP)/Internet

Inter-ORB Protocol (IIOP).

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32619 (2003).

[ISO 2004a]

International Organization for Standardization. ISO/IEC 15504: Information technology—Process

assessment.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38932 (2004).

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21208
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29509
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21823
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29572
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35603
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35582
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32619
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38932

86 | CMU/SEI-2008-TR-012

[ISO 2004b]

International Organization for Standardization. ISO/IEC 18019:2004—Software and system

engineering—Guidelines for the design and preparation of user documentation for application

software.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=30804 (2004).

[ISO 2004c]

International Organization for Standardization. ISO/IEC 90003:2004—Software engineering—

Guidelines for the application of ISO 9001:2000 to computer software.

http://www.iso.org/iso/catalogue_detail?csnumber=35867 (2004).

[ISO 2004d]

International Organization for Standardization. ISO SO/IEC TR 9126-4:2004—Software

engineering—Product quality—Part 4: Quality in use metrics.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39752 (2004).

[ISO 2005a]

International Organization for Standardization. ISO/IEC 24570:2005—Software engineering—

NESMA functional size measurement method version 2.1—Definitions and counting guidelines for

the application of Function Point Analysis.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37289 (2005).

[ISO 2005b]

International Organization for Standardization. ISO/IEC 25000:2005—Software Engineering—

Software product Quality Requirements and Evaluation (SQuaRE)—Guide to SQuaRE.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35683 (2005).

[ISO 2005c]

International Organization for Standardization. ISO/IEC TR 19759:2005—Software

Engineering—Guide to the Software Engineering Body of Knowledge (SWEBOK).

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33897

(2005).

[ISO 2006a]

International Organization for Standardization. ISO/IEC 25051:2006—Software engineering—

Software product Quality Requirements and Evaluation (SQuaRE)—Requirements for quality of

Commercial Off-The-Shelf (COTS) software product and instructions for testing.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37457 (2006).

[ISO 2006b]

International Organization for Standardization. ISO/IEC 14143-6:2006—Information

technology—Software measurement—Functional size measurement—Part 6: Guide for use of

ISO/IEC 14143 series and related International Standards.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39499 (2006).

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=30804
http://www.iso.org/iso/catalogue_detail?csnumber=35867
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39752
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37289
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35683
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33897
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37457
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39499

87 | CMU/SEI-2008-TR-012

[ISO 2007]

International Organization for Standardization. ISO/IEC WD 24765—Systems and software

engineering vocabulary.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50518 (2007).

[Juran 1998]

Juran, Joseph M., co-ed. & Godfrey, Edward G., co-ed. Juran’s Quality Handbook, 5
th
 ed. New

York: McGraw-Hill, 1998 (ISBN: 007034003X).

[Kaplan 1992]

Kaplan, R.S. & Norton D.P. ―The Balanced Scorecard Measures That Drive Performance.‖

Harvard Business Review (Jan-Feb): 71-80.

[Karlöf 1993]

Karlöf, Bengt & Östblom, Svante. Benchmarking: A Signpost of Excellence in Quality and

Productivity. John Wiley & Sons, 1993.

[Kasunic 2006]

Kasunic, Mark. ―Performance Benchmarking Consortium,‖ NDIA CMMI Technology and Users

Conference. Denver, CO, 2006.

[McGarry 2001]

McGarry John, Card David, Jones Cheryl, Layman Beth, Clark Elizabeth, Dean Joseph, & Hall,

Fred. Practical Software Measurement: Objective Information for Decision Makers. Addison-

Wesley Professional, 2001.

[OGC 2007]

Office of Government Commerce, United Kingdom. IT Infrastructure Library.

http://www.itil-officialsite.com/home/home.asp (2007).

[OMB 2003]

Office of Management and Budget. DLA Commercial Activities Guidebook for OMB Circular A-

76 dated May 29, 2003.

http://www.dla.mil/j-3/a-76/A-76Guidebook29May04AppendA.html (2003).

[Park 1992]

Park, Robert E. Software Size Measurement: A Framework for Counting Source Statements.

(CMU/SEI-92-TR-020, ADA258304). Software Engineering Institute, Carnegie Mellon

University, 1992. http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.020.html

[Park 1996]

Park, Robert E., Goethert, Wolfhart B., Florac, & William A. Goal-Driven Software

Measurement–A Guidebook. (CMU/SEI-96-HB-002, ADA313946). Software Engineering

Institute, Carnegie Mellon University, 1996.

http://www.sei.cmu.edu/publications/documents/96.reports/96.hb.002.html

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50518
http://www.itil-officialsite.com/home/home.asp
http://www.dla.mil/j-3/a-76/A-76Guidebook29May04AppendA.html
http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.020.html
http://www.sei.cmu.edu/publications/documents/96.reports/96.hb.002.html

88 | CMU/SEI-2008-TR-012

[Paulk 1993]
Paulk, Mark C., Curtis, Bill, Chrissis, Mary Beth,& Weber, Charles V. Capability Maturity

Model
SM

 for Software, Version 1.1. (CMU/SEI-93-TR-024, ADA263403). Software Engineering

Institute, Carnegie Mellon University, 1993.

http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.html

[PMI 2004]

Project Management Institute. A Guide to the Project Management Body of Knowledge, Third

Edition. Project Management Institute, 2004 (ISBN-10: 193069945X,

ISBN-13: 978-1930699458).

[Price 2008]

PRICE Systems. Price Research. http://www.pricesystems.com/products/price_research.asp

(2008).

[Putnam 2005]

Putnam, Lawrence H., Putnam, Douglas T., & Beckett, Donald M. ―A Method for Improving

Developers’ Software Size Estimates.‖ CrossTalk (April 2005): 16-18.

http://stsc.hill.af.mil/crosstalk/2005/04/0504Putnam.pdf

[Pyzdek 2003]

Pyzdek, Thomas. The Six Sigma Handbook: The Complete Guide for Greenbelts, Blackbelts, and

Managers at All Levels, Revised and Expanded Edition, 2
nd

 ed. New York: McGraw-Hill, 2003

(ISBN: 0071372334).

[QSM 2005]

QSM. QSM Function Point Programming Languages Table, Version 3.0.

http://www.qsm.com/FPGearing.html (2005).

[QSM 2008]

QSM. Project Management for Software Development: Metrics and Measurements.

http://www.qsm.com/met-analyze_overview.htm (2008).

[Reifer 1990]

Reifer Consultants. Productivity and Quality Survey. El Segundo, CA, 1990.

[SEI 2006]
Software Engineering Institute. ―Capability Maturity Model Integration (CMMI).‖

http://www.sei.cmu.edu/cmmi/ (2006).

[SEI 2008]

Software Engineering. ―ISO/IEC 15504.‖

http://www.sei.cmu.edu/cmmi/faq/15504-faq.html (2008).

http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.html
http://www.pricesystems.com/products/price_research.asp
http://stsc.hill.af.mil/crosstalk/2005/04/0504Putnam.pdf
http://www.qsm.com/FPGearing.html
http://www.qsm.com/met-analyze_overview.htm
http://www.sei.cmu.edu/cmmi
http://www.sei.cmu.edu/cmmi/faq/15504-faq.html

89 | CMU/SEI-2008-TR-012

[Spendolini 1992]

Spendolini, Michael J. The Benchmarking Book. AMACON, American Management Association,

1992.

[SPR 2008]

SPR. Benchmarking & Assessment. http://www.spr.com/benchmark/default.shtm (2008).

[4SUM 2008]

4SUM Partners. http://northernscope.com/contact_us (2008).

http://www.spr.com/benchmark/default.shtm
http://northernscope.com/contact_us

90 | CMU/SEI-2008-TR-012

x

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2008

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

A Data Specification for Software Project Performance Measures: Results of a Collaboration

on Performance Measurement

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Mark Kasunic

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2008-TR-012

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-2008-012

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This document contains a proposed set of defined software project performance measures and influence factors that can be used by

software development projects so that valid comparisons can be made between completed projects. These terms and definitions were

developed using a collaborative, consensus-based approach involving the Software Engineering Institute's Software Engineering

Process Management program and service provider and industry experts in the area of software project performance measurement.

This document will be updated over time as feedback is obtained about its use.

14. SUBJECT TERMS

Operational definitions, data specification

15. NUMBER OF PAGES

99

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	A Data Specification for Software Project Performance Measures: Results of a Collaboration on Performance Measurement
	Table of Contents
	Acknowledgements
	Abstract
	1 Introduction
	2 Performance Measurement—Challenges
	3 Performance Measures for Software Projects—Overview
	4 Influence Factors for Software Projects—Overview
	5 Using the Performance Measures and Influence Factors
	6 Request for Feedback
	Appendix: Benchmarks and Benchmarking
	Glossary
	References

